NPS52-81-012
 Naval postaraduate school Monterey, California

ELEMENTS OF PROGRAMMING LINGUISTICS Part I

The Lambda Calculus and its Implementation
B. J. MacLennan

Naval Postgraduate School
copyright 1981

Approved for public release; distribution unlimited
Prepared for:
Naval Postgraduate School
Monterey, California 93940

Rear Admiral J. J. Ekelund
D. A. Schrady
Superintendent
Acting Provost

The work reported herein was supported by the Foundation Research Program of the Naval Postgraduate School with funds provided by the Chief of Naval Research.

Reproduction of all or part of this report is authorized.
Thic ronnrt was nredared bv:

Unclassified
security classification of this page when deto Entorod)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER NPS52-81-012	3. RECIPIENT'S CATALOG Number
4. ELEMENTS OF Pr PROGRAMMING LINGUISTICSPart IThe Lambda Calculus and its Implementation	5. TYPE OF REPORT \& PERIOD COVERED Technical Report
	5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Bruce J. MacLennan	3. Contract or grant number(a)
9. PERFORMING ORGANIZATION VAME ANO ADORESS Naval Postgraduate School Monterey, CA 93940	$\begin{aligned} & \text { 10. RROGRAM ELEMENT. RROJECT, TASK } \\ & \text { AREA A MOKUUNT NUMBERS } \\ & \text { 61152N; YrOOO-01-10 } \\ & \text { NOOO1481WR10034 } \end{aligned}$
11. COntrolling office name and adoress Naval Postgraduate School Monterey, CA 93940	12. REPORT OATE 13 August 1981
	13. NUMEER OF Dages
14. MONITORING AGENCY NAME 9 AOORESS(If dilforone (from Contrilling Offlico)	

16. DISTRIBUTION STATEMENT (Of this Ropore)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (Ot the abstract ontered in Block 20, If difforont from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Contlnue on foverse alde It necessary and tidently by block number)
lambda calculus, LISP, block structured languages, list processing, interpreters, stack implementation, reduction, translation
20. ABSTRACT (Continue on roverse side if nocessary and tdentify by block number)

The lambda calculus is used as an introduction to programming language concepts, particularly the concepts of functional programming. Both interpreted and compiled implementations of an extended lambda calculus are discussed. They can be adopted to implementations of Pascal and Lisp it is shown that traditional stack-based run-time structures can be directly derived from the reduction rules of the lambda calculus.

TAZLE OF COHTEHTS

I. the lambda calculus and its implementation

1. Introduction
2. The Lambda Calculus

This chapter introduces the important concepts of bound and free variable, and scope, as embodied in the lamba calculus. The reduction rules of the lambda calculus are explained with a number of examples.

1. calculus defined
2. bound variables defined
3. bound and free occurences, and scope
4. renaming bound variables
5. function definition
6. syntax of the lamba calculus
7. semantics of the lambda calculus
8. reduced form
9. multiple parameters and other abbreviations
10. the Church-Rosser property
11. The Extenced Lambda Calculus

In this chapter the lambda calculus is turned into a practical LISP-like programming language through the introducton of conditionals, arithmetic operations, list manipulation operations and let and where declarations. These are illustrated through examples. The idea of an absract data type is introduced and used as a framework for explaining the list data type.

1. conditionals
2. recursive definitions
3. primitives
4. data types
5. the list data type
6. recursive problem solving
7. syntactic sugar
8. local declarations in mathematical prose
9. local declarations in the lambda calculus
10. terminology
11. compound declarations
12. recursive declarations
13. Implementing the Lambda Calculus

This chapter develops a recursive interpreter for the lambda calculus. It is similar to the traditional EVAL interpreter for LISP. The structure of this interpreter is motivated by deriving it in a series of simple steps from the hand-reduction procedures presented in Chapter 2. The important concepts of closures and association lists are introduced. This chapter finishes by discussing the elimination of the run-time lookup of variables. This leads to the ideas of (ip,ep) pairs, static nesting levels and static distances. Contour diagrams are used to clarify these concepts. This material prepares the ground for the discussion of static chains in Chapter 5 .

1. goals defined
2. mechanical reduction
3. context
4. hand evaluation
5. constants
6. variables
7. abstractions
8. applications
9. primitive applications
10. conditiunals
11. example of hand evaluation
12. representation defined
13. field accessing functions
14. association lists
15. closures
16. mechanical evaluation
17. representation of variables by fixed locations
18. Static nesting level
19. multiple parameters
20. Runtime Organization

Chapter 5 develops an implementation of the extended lambda calculus for a conventional computer. As preliminaries the ideas of stacks and postfix instructions are explained. This simplifies the explanation of the L-machine, a simplified postfix-oriented stack computer. This material provides the background for a first cut at a compiled implementation of the extended lambda calculus. The ideas of activation records and static chains are explained and derived fron the simple interpreter described in Chapter 4. This allows the development of L-code sequences for each ELC (extended lambda calculus) construct.

1. goals defined
2. stacks
3. postfix instructions
4. the L-machine architecture
5. activation record structure
6. translation to L-code
7. constants
8. primitive applications
9. variables
10. applications
11. abstractions
12. conditionals
13. blocks

Chapter 1

I. 1 Introduction

There are several reasons that the lambda calculus is important for desiyners and implementors of programming languages. One of the first uses of the lambda calculus as a tool of programming linguistics occurred in the mid 1960 s when Strachey and Landin used it to elucidate the semantics of Algol-60. The lambda calculus was picked because, as we shall see, it has the same scope rules as block structured languages. This allowed the consequences of these rules to be studied in a distilled and simple context. In particular, this allowed the implementation of block structured languages to be investigated without the complexities of "real" languages. In this manual you will see both interpreted and compiled implementations of the lambda calculus seminal techniques that can be used or adapted for many other languages. For instance, the closure implementation concept is important in understanding coroutines, processes and the "lazy evaluation" techniques discussed in Part II.

The symmetry and simplicity of the lambda calculus sets a standard against which all languages can be compared. For instance, the essential equivalence between formal parameters and declarations in the lamoda calculus suggests a solution to many problems of language design. This has been used in several experimental languages, e.g. Quest.

Although the lamba calculus is capable of computing any computable function, it provides a model of computation that is much closer to real lanyuages than most other such models (e.g. Markov algorithms, Turing machines, recursive functions). It is therefore more relevent to the real problems of language design.

The programming practices and modes of thought used with the lambda calculus and its derivatives (such as LISP) have formed the foundation of functional programming - the method of programming recently popularized by Backus and characterized by a highlevel applicative programming style. The lambda calculus is essential for an understanding of the design and implementation of such languages.

Chapter 2

T.? The Lambतa ralculus

I.2.1 calculus defineत.

me will be using the lambda calculus as a model of computation. That is, we will be using the lambda calculus as a way of describing the meanirig of programs and as a guide to the implementation of programming lancuages. A calculus is a notation which can be manipulated mechanically to achieve some end. "Calculus" is the Latin word for "pebble" and is derived from the fact that people used to do arithmetic by manipulating pehbles. ("Calc" is the Latin word for "Iimestone" and is also the basis for words such as "calculate".) You are prohably familiar with the differential and integral calculi. In these it is possible to manipulate Eormulas accordina to the rules of integration and differentiation to get results that would otherwise have to be derived by solving complicated Iimits. You may also be familiar with the propositional and predicate calculi. In these certain forms of deductive reasoning cart be performed by the mechanical manipulation of symbols.

The reason for develooira a calculus is that by reducing some process to a set of simple mechanical rules one decreases the chances of making an error. Of course, the tact that the rules of a calculus are mechanical and strictly defined makes them ideal for manioulation by computer. The lambतa calculus is a calculus which models (mimics) the process of combutation itself. Jnder the now generally accebted definition of computability, it has been shown (by Alonzo Church, the inventor of the lambतa calculus, and Alan Turing) that anything that can be done on any computer can also he done in the lambतa calculus (although oerhaps very inefficiently).

I. 2.2 bound variables defined.

One of the central ideas of the lambda calculus is that of a bound variable (sometimes called a dummy variable). Round variables are common in all mathematical notations, for instance, in the summation

$$
\sum_{i=1}^{I_{1}}{ }_{i}
$$

the 'i' is the bound variable. It is a characteristic of bound
variables that it doesr't matter what they are. For instance.

$$
\sum_{k=1}^{n} A_{k}
$$

means exactly the same thing as the previous summation. Similardy, the integral of $x^{2}-3 x$ with respect to x :

$$
\int_{n}^{t} x^{2}-3 x \text { त } x
$$

is the same as the integral of $u^{2}-3 u$ with respect to u :

$$
\int_{0}^{t} u^{2}-3 u d u
$$

In set theory, the set of all x such that $x \geq 0$ is the same as the set of all n such that $r_{1} \geq 0$:

$$
\{x \mid x \geq 0\}=\{n \mid n \geq 0\}
$$

Also, a proposition such as "for every $x, x+1>x$ ":

$$
\forall x\{x+1>x\}
$$

is the same as the proposition "for every $y, y+1>y$ ":

$$
\forall y\{y+1>y\}
$$

In the following examples the bound variables are listed on the right.

"triable

I.2.3 bound and free occurrerices, and scope.

Two ideas that will be very useful to us are hound occurrence and free occurrence. Consider the expression

$$
i \sum_{j=1}^{n} A_{i}
$$

The occurrence of ' j^{\prime} in 'Ait' is called a hound occurrence of the variable ' j '. It is bound by the summation operator (Σ). which is called the binding site (or just binding) of this occurrence of 'i'. We can see that 'j' is bound by noting that we can change it to any other variable (except 'i') without changing the meaning of the expression. For instance,

$$
i \sum_{k=1}^{\square} A_{i k}
$$

Any occurrence of a variable that is not a bound occurrence is called a free occurrence. For instance, 'i'. 'r' and 'A' all occur free in tue above expression. Clearly, it we change a free variable we have changed the meaning of the expression:

$$
i \sum_{j=1}^{n} n_{i j}
$$

Notice that when we say that an occurrence of a variable is bound or tree, we say this relative to some expression. For instance, 'j' is free in

$$
\Delta_{i j}
$$

hut is bound in

$$
\sum_{j=1}^{n} A_{i j} \text { ar in i! } \sum_{j=1}^{n} A_{i j}
$$

Similarly, 'i' is free ir n the above expressions, hut bound in

$$
\sum_{i=1}^{n}\left(i!\sum_{j=1}^{n} A_{i j}\right)
$$

The binding site of a variable determines its scope, which is the region of the expression over which that variable is bound. This region is usually indicated by some textual coriverition, such as brackets or parentheses. To state things differently, ail occurrences of a variable which are ir the scope of a binding of that variable are hound occurrerices of that variable. The following figures exemplify these concepts:

As we have already seen, it is perfectly meaningful for scopes to be nested within other scopes. Some examples of nested scopes are shown below (the brackets indicating scope are called scoping lines):

$$
\begin{aligned}
& \sum_{i=1}^{m}(i \underbrace{\sum_{j=1}^{n} A_{i}}_{j=1}) \\
& \text { score of i } \\
& \int_{n}^{\frac{1}{2} x y^{2}+x y d y} d x \\
& \text { scope of } x
\end{aligned}
$$

We can summarize these ideas as follows:

* The birding site of a variable determines its scope.
* An occurrence of a variable is bound it it is in the scope of a binding site of that variable.
* An occurrence of a variable is free otherwise.

EXERCISES:

For each variable occurrerice in the following expressions, indicate whether it is a birdirig site, a bound occurrence, or a free occurence. Draw scopirig liries to indicate the scope of each birling.

1. $\left\{n_{n} \mid n>m\right\}$
2. $\int_{n}^{\frac{1}{n}} x \sin (x / y) d x$
3. $\int_{0}^{1} x \int_{0}^{x} \sin (y x) d y d x$
4. $\frac{\partial \partial \partial}{\partial x \partial y}\left[\frac{x^{2}+y^{2}}{x y}\right]$
5. $\sum_{i=1}^{n} \sum_{j=1}^{i} A_{i} j^{B} j i$
6. $\sharp x[x @ 7 \Rightarrow \exists y(y \in 7 \wedge x=y+1)]$
7. $\{x \mid x>0\} \cup\{x \mid x<0\}=\{x \mid x \neq 0\}$
8. $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$
T.?.1 renaming hound variables.

As we have seen, hound variables are arbitrary. This is one reason they are often called dummy variables; they only serve co establish a connection between bar cs of an expression. Bound variables are the pronouns of mathematics.

Changing a bound variable to another variable does not change the meaning of an expression. For instance,

$$
\sum_{i=1}^{\infty} A_{i j} \text { and } \sum_{k=1}^{m} A_{k j}
$$

both mean the sum of the j-th column of the matrix A. Suppose we change the bound variable to 'j':

$$
\sum_{j=1}^{n} A_{j j}
$$

This sums the diagonal of the matrix; we have altered the meaning of the expression! we got into this trouble because we charged the bound variable 'i' to the variable 'j', which already occurred within the expression. Thus, the occurrence of 'j' ir t $A_{i j}$ became accidently bound. This is called a collision of variales. The conclusion that can be drawn from this is we cart change a bound variable, throughout its scope, co another variaable only ir the latter variable does not occur with ir that scope.

EXERCISES:

For each expression determine whether the indicated charge of variable alters the meaning of the expression.

1. $\{x \mid x>y\} ;$ charge $x \Rightarrow z$.
2. $\{x \mid x>y\}$; change $x \Rightarrow y$.
3. $\frac{d}{d x}\left(x^{3}-x y\right)$; change $x \Rightarrow t$.
4. same; change $x \Rightarrow y$.
5. $\forall x[\exists y(y>x)] ; y \Rightarrow x$.
6. $\frac{\partial \partial \partial}{\partial x \partial y}\left[\frac{x^{2}+v^{2}}{x y}\right] ; \quad y \Rightarrow x$.
7. $\sinh (x)=\frac{e^{x}-e^{-x}}{2} ; \quad x \Rightarrow u$.
8. \{m|m>e\} if $\{e \mid \sin (e)=0\} ; e \Rightarrow m$.
9. $\{x \mid x>0\} \cup\{y \mid v<0\} ; y \Rightarrow x$.
10. $\sum_{i=1}^{m} A_{i}+\sum_{j=1}^{n} R_{i} ; i \Rightarrow j$.
11. $\sum_{i=1}^{m} i \cdot \sum_{j=1}^{n} v_{j} ; j \Rightarrow i$.
I. 2.5 function definition.

When bound variables are used in function definitions they are often called formal parameters. For example, in

$$
f(x)=x^{2}-3 x
$$

'x' is the bound variable or formal parameter. This is different from the previous examples of bound variables in that the bound variable and the function name are tied together. The lambda calculus provides a notation for functions which does not have this problem. For instance, in the lambda calculus the function f can be written

$$
\lambda x\left\{x^{2}-3 x\right\}
$$

(the λ is a $\frac{1}{2}$ amhara), which can be read "that function which takes any x into $x^{2}-3 x .0$ In the lamb calculus, it we have defined

$$
f=\lambda x\left\{x^{2}-3 x\right\}
$$

and then we ask the value of 'f(5)', we can find it by substituting '5' for 'x' throughout its scope. More specifically, we start with

When we substitute $\lambda x\left\{x^{2}-3 x\right\}$ for ' f ' we get

$$
\lambda x\left\{x^{2}-3 x\right\}(5)
$$

Now, we replace this expression by a copy of the body of f (namely $x^{2}-3 x$) in which every free occurrence of ' x ' is replaced by '5':

$$
5^{2}-3 \cdot 5=25-15=10
$$

This is called the "copy rule" for function evaluation because the invocation ' $f(5)$ ' is actually replaced by a cony of the body of the function with its parameter textually substituted, ie.
$5^{2}-3 \cdot 5^{\prime}$.

1.2.6 syntax of the lambda calculus.

The lamba calculus has a very simple syntax. Lambda expressions are composed ot the symbis ' λ^{\prime} ', '\{', '\}', '(', ')' and vatrable names, put together according to the iollowing ruies:
(i) If 'x' is a varıable and 'E' 1 s an expression of the Lambda caiculus, then ' $\lambda \times\{E\}$ ' is an expression of the lambda calculus, called an abstraction. We call 'x' the binding or the

(2) It 'F' and 'E' are expressions of the lambda caiculus, then ' $F(E)$ ' is an expression of the lambda calculus, called an application. We call 'F' the operator of the application and 'E' the operand or the appircation.
(3) If 'E' is an expression of the iambda calculus, then so 15 '(E)'.
(4) Ir 'x' is a varıable, then it is an expression of the iambda calcuius.
(5) The only lambda expressions are those described in (i) to (4).

To permit more meaningtul examples, we will sometines allow addıtional types of expressions within out lambda expressions, such as conventional arthmetic expressions (e.g. ' $3+x$ ').

The way in which we have described the syntax of the lambda calculus will form a model for all later syntax descriotions. we have enumerated a set of orimitives (the basic symbols and variables) and have described a set of constructors or formation rules, which will yield all the legal exoressions of the language when apolied recursively to the primitives.

EXERCISES:

Which of the following are legal lambतa calculus expressions?

1. x
2. $\mathrm{f}(\mathrm{x})$
3. $\lambda x\{f(x)\}$
4. (g$) \mathrm{y}$
5. $f(a)(b)$
6. $\lambda x\{f(x)\}(a)$
7. $\lambda x\{I(x)\}(\lambda x\{x\})$
8. $f g$
9. $\{g(a)\}$
io. $f\{x\}$
ii. $f(\lambda x)$
I.2.7 semantics of the iambda calculus.

In a previous section we intcrmaily discussed evaluation of expressions or the lambda calculus by the copy rule. In this section this evaluation $1 s$ detined more exactly chrough two reduction rules:
i (renaming) : one expression may be reduced to another by changing a bound variable thioughout lts scope to any other variable that does not occur within that scope.

2 (substitution): a subexpression or the iorm ' $\lambda x\{E\}(A)$ ' may be reduced by repiacing it by a copy or e in which ailiree occurrences of x are replaced by A, provided this does not result in any iree varlables or A becoming bound.

We can restata the renaming rule as follows: An expression ' $\lambda x\{E\}$ ' may be reduced by renaming to an expression ' $\lambda y\{E\}$ ', where F is obtained from E by repiacing ail iree occurrences of x in E by y. This is only aliowed 1 I y does not occur in E . For exampie, suppose we wish to rename x to u in ' $\lambda x\left\{x^{2}+2 x+i\right\}$ '. We do this by changing to u all iree occurzences or x in ' $x^{2}+2 x+i$ '. This ylelds ' $\lambda u\left\{u^{2}-2 u+i\right\} '$. This reduction is symbolized:

$$
\lambda x\left\{x^{2}+2 x+1\right\} \Rightarrow \lambda u\left\{u^{2}+2 u+i\right\}
$$

Some other reductions permitted by the renamıng rule are:

$$
\begin{aligned}
& \lambda x\{x\} \Rightarrow \lambda a\{a\} \Rightarrow \lambda g\{g\} \Rightarrow \lambda I\{I\} \\
& \lambda x\{\lambda y\{x(y)\}\} \Rightarrow \lambda I\{\lambda y\{I(y)\}\} \Rightarrow \lambda I\{\lambda a\{I(a)\}\} \\
& \lambda x\{x+i\} \Rightarrow \lambda u\{u+i\} \\
& \lambda x\{\lambda y\{x+y\}\} \Rightarrow \lambda a\{\lambda y\{a+y\}\} \Rightarrow \lambda a\{\lambda b\{a+b\}\}
\end{aligned}
$$

Lets consider an illegal apolication of the renaming rule in order to better understand its restriction. Suppose we wish to apoly the renaming rule to

$$
I=\lambda x\{e \cdot x\}=\lambda x\{(2.71828 \ldots) x\}
$$

by charging x to e. This is not allowed since e occurs in 'ex'. Ne can see that it we did the substitution anyway we would change the meaning of the expression:

$$
I^{\prime}=\lambda e\left\{e^{\cdot} e\right\}=\lambda e\left\{e^{2}\right\}
$$

Note that $f(1)=2.7182 \% .$. while $f^{\prime}(1)=1 ;$ and f^{\prime} are not the same function. Renaming x to y, however, would not charge the meaning:

$$
\mathrm{I}^{\prime \prime}=\lambda y\left\{e^{\cdot y}\right\} ; \mathrm{I}^{\prime \prime}(1)=2.7182^{\circ} \ldots
$$

The renaming rule is generally needed only to avoid variable collisions.

EXERCISES:

Apply the renaming rule as indicated, or state that its application would be illegal:

1. $\lambda x\{x\}$; change $x \Rightarrow y$.
2. $\lambda x\{\lambda y\{x+y\}\} ;$ change $y \Rightarrow x$.
3. $\lambda x\{£(x)\}$; change $E \Rightarrow g$.
4. $\lambda d\{d+e\}$; charıge $d \Rightarrow e$.
5. $\lambda x\{\lambda y\{x(y)\}\} ;$ charge $x \Rightarrow E$.

Next we will consider the substitution rule. The expression ' $\lambda x\{x+1\}(3)$ ' fits the form required by the substitution rule: it is an application whose operator is an abstraction. Hence, we can reduce it by replacing all free occurrences of ' x ' in ' $x+1$ ' by ' 3 '. The result is ' $3+1$ '. Now consider

$$
\lambda x\{\lambda y\{x(y)\}\}(E)
$$

This is an apolication whose operator is the abstraction

$$
\lambda x\{\lambda y\{x(y)\}\}
$$

We can apply the substitution rule by replacing by 'E' all free occurrences of ' x ' in ' $\lambda y\{x(y)\}$ '. This produces:

$$
\lambda y\{E(y)\}
$$

To better understand the restriction on the substitution rule, first consider this legal substitution: Suppose, as is usual, that $e=2.71828 \ldots$ Let $\bar{E}=\lambda x\{\lambda y\{x+y\}\}$. Ther we can reduce $\mathrm{E}(2 \mathrm{e})(1)$ as follows:

$$
\begin{aligned}
& E(2 e)(i) \Rightarrow \lambda x\{\lambda y\{x+y\}\}(2 e)(1) \\
& \Rightarrow \lambda y\{2 e+y\}(1) \\
& \Rightarrow 2 e+1 \Rightarrow 5.43 \ldots+1 \Rightarrow 5.43 \ldots
\end{aligned}
$$

Now lets look at a slightly different examole:

$$
E^{\prime}(2 e)(I) \text { where } E^{\prime}=\lambda d\{\lambda e\{d+e\}\}
$$

We see that E^{\prime} is the same function as E; we have just renamed x and y to d and e. When we replace f^{\prime} by its value we aet

$$
\lambda d\{\lambda e\{d+e\}\}(2 e)(I)
$$

which is an application whose operator is the abstraction:

$$
\lambda d\{\lambda e\{d+e\}\}
$$

To apoly the substitution rule we must replace all free occurrences of 'e' in ' $\lambda e\{d+e\}$ ' by '2e'. But, this is only allowed if it does not cause a free variable of ' $2 e^{\prime}$ to become bound. In this case a collision does occur, since 'e' is free irl '2e' hut not in 'גe\{dte\}'. To see the reason for this restriction we will go ahead and perform the substitution. The result will be 'גe\{?ete\}'. This has changed the meaning of the expression; a fact we can see by evaluating:

$$
\begin{aligned}
& \lambda e\{2 e+e\}(1) \Rightarrow 2 \cdot 1+1 \Rightarrow 3 \\
& \text { Hence, } f^{\prime}(2 e)(1) \Rightarrow 3
\end{aligned}
$$

although we know the answer should be $5.43 \ldots$... How do we avoid this situatiorl? Since bound variables are arbitrary, we simply rename the offeriding bound variable. For instance, we can rename 'e' to 'c':

$$
\lambda d\{\lambda e\{d+e\}\}(2 e)(1) \Rightarrow \lambda d\{\lambda c\{d+c\}\}(2 e)(i)
$$

which lets us proceed with the reduction:

$$
\begin{aligned}
& \lambda d\{\lambda c\{d+c\}\}(2 e)(1) \Rightarrow \lambda c\{2 e+c\}(1) \\
& \Rightarrow 2 e+1 \Rightarrow 5.43 \ldots+1 \Rightarrow 6.43 \ldots
\end{aligned}
$$

Ir fact, this is the major use of the renaming rule.
EXERCISES:

Determine if the substitution rule is applicable to each of these expressions. If so, reduce the expression by the substitution rule, first applying the renaming rule, if necessary.

1. $\lambda x\{x(y)\}(E)$
2. $\lambda x\{\lambda y\{x(y)\}\}(y)$
3. $\mathrm{E}(3)$
4. $\lambda x\{\lambda y\{x(y)\}\}(\lambda z\{y(z)\})$
5. $\lambda y\{y \cdot y\}(3)$
6. $\lambda E\{E(3)+E(4)$ \} (g)
I.2.8 reduced form.

If and when an expression is reduced to the extent that the substitution rule can no longer be applied to it, it is said to be in reduced form. Intuitively, an expression is in reduced form when it is an answer (i.e. it is done computing). The following table shows examples of both unreduced and reduced expresions:

Not Reduced	Reduced
$\lambda x\{x\}(y)$	y
$\lambda y\{E(y)\}(a)$	$E(a)$
$\lambda x\{\lambda y\{x(v)\}$	
$\lambda x\{x\}(\lambda)$	$\lambda y\{f(y)\}$
$\lambda x\{x(y)\}(\lambda x\{x(x)\})$	$\lambda x\{x\}$

In each case above, the expression on the right is the reduction of the expression on the left. Not all expressions have a reduced form. Consider the expression $Y(Y)$, where $Y=\lambda x\{x(x)\}$:

$$
Y(Y) \Rightarrow \lambda x\{X(X)\}(Y) \Rightarrow Y(Y) \Rightarrow \ldots
$$

This is the lambda calculus equivalent of an infinite loop.

EXERCISES:

Decide if each of the following expressions is in reduced form. If not, then reduce it to reduced form.

1. $\lambda f\{f(3)+f(4)\}(\lambda y\{y \cdot y\})$
2. $f(\lambda x\{x+x\})$
```
3. }\lambdax{x<0}(\lambdax{x+1}
4. }\lambdax{x<0}(\lambdax{x+1}(2) 
```


I.2.9 multiple parameters and other abbreviations.

The lambda expressions we have defined have only one bound variable. We can get the effect of two bound variables by nesting the lambda expressions, for instance:

$$
\begin{aligned}
& \lambda x\{\lambda y\{x+y\}\}(3)(1) \\
& \Rightarrow \lambda y\{3+y\}(1) \\
& \Rightarrow 3+1 \\
& \Rightarrow 4
\end{aligned}
$$

Recause such nested lambda expressions are so common, we allow the following abhreviations (using '=>' also as a sign of abbreviation):

$$
\begin{array}{ccc}
\lambda x y\{x+y\} & \Rightarrow \lambda x\{\lambda y\{x+y\}\} \\
F(3,1) & \Rightarrow & F(3)(1)
\end{array}
$$

These abbreviations are the usual method of handing multiargumerit functions in the lambda calculus. Of course, it is not normally necessary to think of these as abbreviations; we just do the multiple parameter substitutions directly, e.g.,

$$
\begin{aligned}
& \text { if } \mathrm{I}=\lambda x y\{x+y\} \\
& \text { then } \mathrm{f}(3,1) \\
& \Rightarrow \lambda x y\{x+y\}(3,1) \\
& \Rightarrow 3+1 \Rightarrow 4
\end{aligned}
$$

In exactly the same way we will allow substitutions involving any number of parameters, including norie.

$$
\begin{aligned}
& \lambda a b c\left\{a x^{2}+b x+c\right\}(9.5,1) \Rightarrow 9 x^{2}+5 x+1 \\
& \lambda\{m+1\}() \Rightarrow m+1
\end{aligned}
$$

As we have seen in some of the previous examples, lambda expressions can get quite large. In order to be able to program significant functions in the lambda calculus we will need a way of attachirig names to lambda expressions. Therfore we will allow rewriting rules of the form:

```
plusp => \lambdax{x>0}
minusp => \lambdax{x<0}
succ => \lambdax{x+1}
square => \lambdax{x\cdotx}
```

Then we can write, for instance,
mirusp (succ (2))
$\Rightarrow \lambda x\{x<0\}(\operatorname{succ}(2))$
$\Rightarrow \operatorname{succ}(2)<0$
$\Rightarrow \lambda x\{x+1\}(2)<0$
$\Rightarrow \quad 2+1<0$
$\Rightarrow \quad 3<0$
\Rightarrow false

I.2.10 the Church-Rosser property.

In the above reduction we reduced the outermost apolication first. We need not have done this, for instance,

```
minusp(succ(2))
=> minusp(\lambdax{x+1}(2))
=> minusp(2+1)
=> minusp(3)
=>\lambdax{x<0}(3)
=> 3<0
# false
```

We see that this produces the same answer. It is a proderty of the oure lambda calculus (called the Church-Rosser proderty) that any reduction sequence that terminates will produce the same result. It is important to know when a lanauade, or a part of a Ianguage, satisties the Church-Rosser Droderty since this mearis an odtimizing compiler can alter the evaluation order without effecting the meaning of a program. Since some of the extersions of the lambda calculus that we will be investigating do not satisfy the Church-Rosser property, we will adopt a standard order for reduction. It is defined by the rule: don't reduce ar application until its arguments are already in reduced form.

STANDARD REDUCTION ORDER: An application is reduced (by substitution) only if its arguments are already in reduced form.

EXERCISE: Reduce to reduced form:

$$
\lambda f\{\operatorname{succ}(f(2)+f(3))\}(\lambda x\{\text { square }(x)+2\})
$$

```
7.ero => \lambdafc{c}
One => \lambdaic{f(c)}
Two => \lambdaEc{E(E(c))}
Three => \lambdaEc{E(E(E(C)))}
sum => \lambdaMN{\lambdaEC{M(E,N(E,C))}}
```

then, reduce to reduced form 'sum(Two, One)'. What is this equal to? If you worder about the motivation for these definitions, then try reducing 'Three (succ,0)' and 'Two(succ,3)'.

Chapter 3

I. 3 The Extended Lambda Calculus.

I.3.1 Conditionals.

The lambda-calculus, as we have been using it so far, is not very useful; it is only possible to define functions that evaluate strictly in order: there is no decision making ability. Therefore we would like to define a function 'if' such that if $(c, t, f) \Rightarrow t$ if c is true and if $(c, t, f) \Rightarrow f$ if c is false. Hence, 'true' selects 't' from (t,f) and 'false' selects 'f' from (t, f). One way to do this is to define 'true' and 'false' so that true $(t, f) \Rightarrow t$ and false $(t, f) \Rightarrow f$. Thus:

Then we want if $(c, t, f) \Rightarrow c(t, f)$, where c reduces to true or false, so

$$
\text { if } \Rightarrow \lambda b t f\{b(t, f)\}
$$

To see how this works, suppose 'x=y' returns 'true' if x equals y and 'false' otherwise. Then

$$
\begin{aligned}
& \text { if }(2=0,25,37) \\
& \Rightarrow \text { if }(f a 1 s e, 25,37) \\
& \Rightarrow \lambda b t f\{b(t, f)\}(\text { false, } 25,37) \\
& \Rightarrow \text { false }(25,37) \\
& \Rightarrow \lambda t f\{f\}(25,37) \\
& \Rightarrow 37
\end{aligned}
$$

Next we will program the logical connectives: 'and', 'or' and 'not'. Not is the simplest since it just negates a truth value:

$$
\begin{array}{ll}
\text { not(true) } & \Rightarrow \text { false } \\
\text { not(false) } & \Rightarrow \text { true }
\end{array}
$$

That is, if x is true then not (x) is false, otherwise not (x) is true. This can be directly translated to the lambda calculus:

$$
\text { not } \Rightarrow \lambda x\{\text { if(} x \text {, false, true })\}
$$

The 'and' function is defined so that and (x, y) is true only if both x and y are true. This is summarized in the following truth
table:

AND	true	fals:
frue	true	false
false	false	false

We can see that if x is true then and (x, y) has the same value as y, and that if x is false then and (x, y) is false regardless of the value of y. We can translate this directly into the lambda calculus:

$$
\text { and } \Rightarrow \lambda x y\{i f(x, y, f a l s e)\}
$$

EXERCISE: Define 'or' so that or (x, y) is true if and only if x or Yor both are true. That is, 'or' must satisfy the truth table:

OR	true	Ealse
Erue	true	Erue
false	true	false

Show that your definition works by reducing or(false, true)'.
I.3.2 Recursive Definitions.

Now that we have a conditional, we can define some more useful functions. The factorial function is defined so that

$$
\begin{aligned}
& 4!=4 \cdot 3 \cdot 2 \cdot 1=24 \\
& 3!=3 \cdot 2 \cdot 1=6 \\
& 0!=1
\end{aligned}
$$

or in general.

$$
n!=n(n-1)(n-2) \ldots(2)(1)
$$

The factorial can also be defined recursively as follows:

$$
n!=\begin{array}{ll}
1, & \text { if } n=0 \\
n(n-1)!, & \text { if } n>0
\end{array}
$$

Using the conditional it is now easy to define a function 'fac' such that $\operatorname{fac}(n)=n!$.

$$
\text { fac } \Rightarrow \lambda n\{\operatorname{if}(n=0,1, n \cdot \operatorname{fac}(n-1))\}
$$

Consider the computation of fac(2):

```
fac (2)
\(\Rightarrow \lambda n\left\{\operatorname{if}\left(n=0,1, n^{*} f a c(n-1)\right)\right.\)
\(\Rightarrow \quad\) if \((2=0,1,2 *\) fac \((2-1))\)
\(\Rightarrow \quad i f\left(f a l s e, 1,2^{* f a c}(1)\right)\)
\(\Rightarrow 2 * f a c(1)\)
\(\Rightarrow 22^{*} \lambda n\{\operatorname{if}(n=0,1, n * \operatorname{tac}(n-1))\}(1)\)
\(\Rightarrow 2 * \operatorname{if}(1=0,1,1 * f a c(1-1))\)
\(\Rightarrow 2\) * 1 * fac \((0)\)
\(\Rightarrow 2\) * 1 * \(\lambda n\{\operatorname{if}(n=0,1, n * f a c(n-1))\}(0)\)
\(\Rightarrow 2 * 1 * \operatorname{if}(0=0,1,0 * f a c(0-1))\)
\(\Rightarrow 2 * 1 * i f(\) true, \(1,0 * f a c(-1))\)
\(\Rightarrow 2 \begin{array}{r}* \\ \Rightarrow\end{array}{ }^{*} 1\)
\(\Rightarrow 2\) * 1
=> 2
```

To keep the above reduction readable, most of the reductions associated with 'if' have not been shown. Notice that in the fourth to the last line (the last line with an 'if' in it) if we had decided to reduce the argument formula $0 * f a c(-1)$ we would have started a never-ending recursion. That is,

$$
\begin{aligned}
& 2 \text { * } 1 \text { *if(} 0=0,1,0 * f a c(0-1)) \\
& \Rightarrow 2 * 1 * \text { if(true, 1, } 0 * \text { fac (}-1 \text {)) } \\
& \Rightarrow 2 * 1 * \operatorname{if}(t r u e, 1,0 * \lambda n\{\operatorname{if}(n=0,1, n * f a c(n-1))\}(-1)) \\
& \Rightarrow 2 \text { * } 1 \text { * if(true, } 1,0 \text { *if(}-1=0,1 \text {, } \\
& -1 \text { * } \lambda n\{\text { if }(n=0,1, n * f a c(n-1))\}(-2))) \\
& \Rightarrow 2 * 1 * \operatorname{if}(t r u e, 1,0 * i f(f a l s e, 1 \\
& -1 * \operatorname{if}(-2=0,1,-2 * f a c(-2-1)))) \\
& \text { => . . . }
\end{aligned}
$$

This process may never terminate! What the Church-Rosser property really says is that two different reductions of a formula give the same result provided they both terminate. For this realson we avoid evaluating any arguments of 'if' that we don't have to.

Since 'if' is such a common function, we will introduce a special notation for it. This is just an abbreviation, it really adds nothing to the lambda calculus. Such abbreviations are often called "syntactic sugar" (because a little "syntactic sugar" helps one to swallow the lambda calculus). For simple 'if's, such as if (b,t,e) we will write [b->t|e], which is read: "if b then t else e." For nested 'if's, such as if (b, t, if (c, u, e)) we will write

$$
[b \rightarrow t|c->u| e]
$$

and so forth. This can be read "if b then t else if c then u else $e^{\prime \prime}$. Using this notation the factorial function can be
written

$$
f a c \Rightarrow \lambda n\{[n=0 \rightarrow 1 \mid n \cdot f a c(n-1)]\}
$$

I.3.3 Primitives.

Te have seen that it is possible to define in the lambda calculus Boolean values (true and false), logical connectives, 'if' expressions, arithmetic (sum), and even numbers themselves. This should lend some credibility to the statement made earlier that anything that can be done on computer can be done in the lambda calculus. For our purposes, there is not much point in carrying this exercise any further. In the future, any application-oriented functions that we might need (such as arithmetic) will be introduced as extensions to the lamoda calculus. For instance, the arithmetic operations might be introduced by a set of rules like:

```
sum(1,1) => 2
sum(1,2) => 3
```

or in general

$$
\operatorname{sum}(m, n) \quad \Rightarrow \quad m+n
$$

This way we have an apolication independent language framework formed by the lambda abstraction and function application syntax, and a flexible set of application dependent primitive operations which we can define as the need occurs. Notice that again ve are breaking the language down into primitives and constructors. In the next section we will build a list processing language by combining the constructors of the lambda calculus with a set of powerful list processing primitives. We will find that many apparantly different programming languages are really just sugared versions of the lambda calculus with some applicationoriented primitives added. The following chart shows some primitives that might be included in languages intended for numerical, list processing, string processing and data processing applications.

language	constructors	primitives
	application independent,	application dependent
numerical	$\wedge x\{E\}, f(a)$	$\begin{aligned} & \text { integers, reals } \\ & +,-, x, /, \ldots . \end{aligned}$
list processing	$\lambda x\{\Xi\}, \pm(a)$	$\begin{aligned} & \text { lists, atoms, } \\ & \text { first, rest, cons, } \end{aligned}$
string processing	$\lambda x\{\Xi\}, f(a)$	strings, characters, substr, concat, match,
data processing	人x $\{\mathrm{E}\}, \mathrm{S}(\mathrm{a})$	$\begin{aligned} & \text { files, records, } \\ & \text { move, read, write, ... } \end{aligned}$

I.3.4 Data Dypes.

When we extend the lambda calculus with new primitives we will always do it by defining a set of data values and a set of primitive operations on those values. Any operations we wish to perform on the data values must be constructed from the primitive operations. The term data type is used to refer to a set of data values together with a set of primitive operations on those values. For instance, the data type integer is the set of integer data values:

$$
\cdots,-3,-2,-1,0,1,2,3, \ldots
$$

together with the primitive operations on those values, e.g.,

$$
+,-, x, /,=, \neq,\langle,>, \leq, \geq
$$

Any other operation, e.g. squaring, must be constructed from the given values and primitive operations:

$$
\text { square }=\lambda n\{n \times n\}
$$

Similarly, the Boolean data type is composed of the Boolean values:

true, false

together with the primitive operations on these values:

$$
\text { not, and, or, if, }=, \neq
$$

I.3.5 The Iist Data Type.

In this section we will define the list data type. The data values are called lists and are written as sequences of values surrounded by angle brackets. For instance,
is a list containing the integers five, eight and sixteen, in that order. Lists can have any number of elements, including one:

$$
\langle 32\rangle
$$

This is the list containing only the integer 32. Lists can also be empty, i.e., have no elements:

<>

Zhis is called the null list. Lists can contain any data values, for instance,
<5 'cat' false 1.6>
is a list whose first element is the integer five, whose second element is the string 'cat', whose third element is the Boolean value false, and whose fourth and last element is the real number 1.5. Lists can also contain other lists, for instance,

$$
\langle 5\langle 932\rangle 8 \quad 16\rangle
$$

is a list whose first element is the integer five, whose second element is the list 〈9 32>, whose third and fourth elements are 8 and 15. Lists can be nested in this way to any depth.

We will define three important primitive operations on lists. The function 'first' returns the first element of a list, e.g.

$$
\begin{aligned}
& \text { first (}\langle 5816\rangle \text {) } \Rightarrow 5 \\
& \text { first(<<1 2> <3 4>>) } \Rightarrow\langle 12\rangle
\end{aligned}
$$

In the second example notice that the first element of <<1 2> <3 $4 \gg$ is the list <1 2>. It makes no sense to apply 'first' to the null list or to an atom, which is what we call things that are not lists:
first (\rangle)
first (18) is meaningless
Null lists and atoms don't have a first element.
A complementary operation to 'first' is 'rest', which returns all of a list except the first element, e.g..

```
rest( <5 8 15> ) => <8 15>
```



```
rest( <3> ) => <>
```

It makes no sense to apply 'rest' to null lists or atoms:

```
rest( <> ) is meaningless
rest( 18) is meaningless
```

The 'first' and 'rest' operations take lists apart; we need another operation to put them together. This is 'cons' (short for "construct"), which makes its first argument the new first element of the list which is its second argument. For instance,

```
cons( 5, <3 16>) => <5 8 16>
cons( <1 2>, <<3 4}>>>) => <<<1 2\rangle\langle<3 4 4>>
cons(\langle5\rangle, <8 15\rangle) => <<5> & 15>
cons( 5, <> ) => <5>
```

Notice that the first argument to 'cons' does not have to be an atom, although its second argument does have to be a list:

$$
\text { cons }(5,8) \text { is meaningless }
$$

The meaning of 'first', 'rest' and 'cons' is summarized in the following formulas. In these, 'x' represents any data value.

```
first( <x ...> ) => x
rest( <x ...> ) => <...>
cons( x, <...>) => <x ...>
```

These operations can be combined, for instance,

```
first( rest( <5 8 16> ) )
```

\Rightarrow first (〈8 16〉)
$\Rightarrow 8$

Hence, first(rest(L)) is the second element of L.
The 'cons' operation is the inverse of 'first' and 'rest'. For example, since

```
first( <5 8 16> ) => 5, and
rest( <5 8 16>) ) => \langle8 16>, and
cons( 5,\langle8 16\rangle) => <5 8 16>
```

we see that

```
cons(first(<5 8 1\sigma\rangle), rest(<5 8 16\rangle))
=> cons( 5, <8 15>)
#}\langle\begin{array}{lll}{5}&{8}&{16}
```

Thus, the following identities hold (where L is a list and x is any value):

```
first(cons(x, L)) = x
rest(\operatorname{cons}(x,I)))=I
cons(first(I),rest(I)) = L, if L is non-null
```

Another primitive that will be useful to us is the equality relation. For instance,

$$
\begin{aligned}
& 5=5 \quad \Rightarrow \quad \text { true } \\
& 5=6 \quad \Rightarrow \quad \text { false }
\end{aligned}
$$

The equality relation is only defined for atoms (e.g., numbers, strings and Boolean values); its use on lists is meaningless:

$$
5=\langle 6\rangle \text { is meaningless }
$$

The meaning of the equality relation is summarized by the following formulas, in which 'a' and 'b' represent different atoms:

$$
\begin{aligned}
& a=a \quad \Rightarrow \quad \text { true } \\
& a=b \quad \Rightarrow \text { false }
\end{aligned}
$$

There are only two other functions that we need to do useful list processing. These are 'null', which asks if a list is empty, and 'atom', which asks whether something is a list. For instance,

$$
\begin{aligned}
& \text { null }(\rangle) \quad \Rightarrow\rangle \text { true } \\
& \text { null }(\langle 58 \\
& \text { null }(\langle\rangle\rangle)
\end{aligned}
$$

The list $\langle\rangle\rangle$ is not null because it contains a single element, namely, the null list, <>. The 'null' function is not defined for atoms:
null(5) is meaningless

Null is defined by the following formulas, in which x is any value:

$$
\begin{aligned}
& \text { null }(\rangle)=>\text { true } \\
& \text { null }(\langle x \ldots \text { false }
\end{aligned}
$$

The 'atom' function determines whether a value is an atom or a list, for example,

```
atom ( 5 ) \(\Rightarrow\) true
atom ( \(\langle 5\) 8 15〉) \(\Rightarrow\) false
atom (〈5〉) \(\Rightarrow\) false
atom( <>) \(\quad\) > false
```

The＇atom＇function，which is meaningful when applied to any values，is defined by the following formulas，in which＇a＇ represents any atom：

$$
\begin{aligned}
& \operatorname{atom}(\langle\ldots\rangle) \Rightarrow \text { false } \\
& \operatorname{atom}(a)^{\prime} \Rightarrow \text { true }
\end{aligned}
$$

The list data type is summarized in the following figure．

```
Data Values:
    atoms: 1, 2, .... 'cat', 'hat', ..., true, false, ....
    lists: <>, <1 'cat'>, \langle'call' <'var' 'f'> 23>, ....
Primitive Operations:
    first(\langlex \ldots\rangle) => x
    rest(\langlex ...\rangle) => <...\rangle
    cons( x, <...>) => <x ...>
    a=a => true
    a=a' => false
    null(<> ) => true
    null(\langlex ...\rangle) => false
    atom( a ) => true
    atom( <...> ) => false
    where a is an atom and }x\mathrm{ is a list or an atom.
    Figure 1. The List Data Tyoe
```

I.3.6 Recursive Problem Solving.

In order to better understand these list processing opera－ tions，a number of examples will be presented．First we will define a function＇sub＇such that $\operatorname{sub}(I, i)$ is the i－th element of the list I．For instance，

since $\langle 9$ 32＞is the second element of $\langle 5\langle 932\rangle 16\rangle$ ．How are we going to program this function？The way to solve problems like this is to ask what subcases of the problem are already solved． In the case of＇sub＇this is fairly easy，since by definition
'gu bl, 1)' is just the first element of L. That is,

$$
\operatorname{sub}(I, 1) \Rightarrow \text { first }(I)
$$

The next step in solving a problem such as this is to find some way to reduce the general problem to the subcases that are already solved. Notice that

$$
\begin{aligned}
& \operatorname{sub}(\langle 58 \\
& \text { sub }\left(\begin{array}{rrrr}
& 16 & 25\rangle, & 3
\end{array}\right) \Rightarrow 16 \\
& \operatorname{su}
\end{aligned} 16
$$

Hence,

$$
\operatorname{sub}(I, i) \Rightarrow \operatorname{sub}(\operatorname{rest}(I), i-1)
$$

We have reduced the original problem, $\operatorname{sub}(L, i)$, to one that is closer to the solved problem, sub (I, 1), since i-1 is closer to 1 than i is. We now have two cases, just as in the factorial examole:

$$
\begin{array}{lll}
\operatorname{sub}(I, i) & & \\
\text { sub }(I, i) & & \text { if } i=1 \\
\operatorname{sub}(\operatorname{sub}(r e s t & (I), & i-1), \\
& \text { if } i>1
\end{array}
$$

This is easily translated to the lambda calculus:

$$
\text { sub } \Rightarrow \lambda I i\{[i=1 \rightarrow \operatorname{first}(I) \mid \operatorname{sub}(\operatorname{rest}(I), i-1)]\}
$$

We will try this on $\operatorname{sub}(\langle A B C D\rangle, 3)$:

```
sub(\langleA B C D>, 3)
=>[3=1-> first(\langleA B C D\rangle) | sub(rest(\langleA B C D\rangle), 3-1)]
=>ub(<B C D>, 2)
=>[2=1 - [first(\langleB C D\rangle) | sub(rest(\langleB C D\rangle),2-1) ]
= sub(<C D>, 1)
=> [1=1 -> first(\langleC D\rangle) | sub(rest(\langleC D\rangle), 1-1)]
| first(\langleC D\rangle)
C C
```

The 'sub' function is so useful that we will adopt a special "array subscripting" notation for it:

$$
A[i] \Rightarrow \operatorname{sub}(A, i)
$$

Thus, $A[1]$ and first (A) are the same.
Next we will define a function 'append' such that append (I, M) concatenates the lists I and M. That is,

$$
\text { append }(\langle 1 \quad 2\rangle,\langle 345\rangle) \Rightarrow\left\langle\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right\rangle
$$

Note that this is different from cons（＜lllll 2$\rangle\left\langle\begin{array}{lll}3 & 4\end{array}\right\rangle$ ）which would give us＜＜1 2＞ 345\rangle ．We will use the same problem solving technique that we used with＇sub＇by asking：That cases of ＇append＇are immediately solvable？Those in which one of the lists to be appended is null，for instance，

$$
\text { append }(\rangle,\langle 456\rangle) \Rightarrow\langle 45 \text { 6 }\rangle
$$

In general，

$$
\begin{aligned}
& \text { append }(\rangle, L) \Rightarrow L \\
& \text { append }(I,\langle \rangle) \Rightarrow L
\end{aligned}
$$

Next we must investigate how the general problem can be reduced to either of these two cases．For instance，since we know append（＜＞，L）is L ，we can work on reducing the first argument to an empty list．Suppose we wish to simplify

$$
\text { append(〈2〉, 〈3 } 4 \text { 5〉) }
$$

We know

$$
\begin{aligned}
& \text { append }(\rangle,\langle 345\rangle) \Rightarrow\langle 345\rangle \\
& \operatorname{cons}(2,\langle 345\rangle) \Rightarrow\langle 2345\rangle
\end{aligned}
$$

so we can see that

```
append( <2>, <3 4 5>)
=> cons(2,\langle < 4 5
=> cons( 2, append̃( <>, <3 4 5>))
```

Now let＇s consider a more complicated example：

$$
\text { append (}\langle 1 \text { 2〉, }\langle 34 \text { 5 }\rangle \text {) }
$$

We already know how to do

$$
\text { append }(\langle 2\rangle,\langle 345\rangle) \Rightarrow\langle 234 \text { 5〉 }
$$

so all we have to do is reduce the new case to this：

```
append( <1 2>, <3 4 5>)
=> cons(1,\langle2 3 4 5>)
=> cons( 1, append( <2>, <3 4 5> ))
```

Summarizing，we have

$$
\left.\left.\left.\begin{array}{l}
\text { append } \left.(\langle 1,2\rangle,\langle 345\rangle) \Rightarrow \text { cons }\left(\begin{array}{lll}
1, \text { append }(\langle 2\rangle,\langle 3 & 4 & 5\rangle)) \\
\text { append }(\langle 2\rangle, & \langle 3 & 4 \\
\hline
\end{array}\right\rangle\right) \Rightarrow \text { cons }(2, \text { append }(\rangle,\langle 3
\end{array} 45\right\rangle\right)\right)
$$

It should be apparent that the general case is

$$
\text { append }(x, y)=\operatorname{cons}(x[1] \text {, append }(\operatorname{rest}(x), y))
$$

Summarizing，we have the two cases：

```
append \((x, y) \Rightarrow y, \quad\) if \(x\) is null
append \((x, y) \Rightarrow \operatorname{cons}(x[1]\), append(rest( \(x), y)\) ), if \(x\) is non-null
```

This can be easily translated to the lambda calculus：

$$
\text { append } \Rightarrow \lambda x y\left\{\begin{array}{l}
\lceil\operatorname{null}(x) \quad->, y \\
\mid \operatorname{cons}(x[1], \text { append }(\operatorname{rest}(x), y))]\}
\end{array}\right.
$$

We will find that all recursive definitions fit this pattern：（1） a stopping condition that forms the base of the recursion and（2） a recursive invocation of the function in which the problem is reduced to a simpler problem．In list processing the stopping condition often takes the form＇null（．．．）＇，just as in numerical functions it often takes the form＇．．．＝0＇．You probably will recognize a similarity between recursive functions and mathemati－ cal proofs by induction．This similarity simplifies prooving that recursive functions are correct．

It should be mentioned that if we had decided to reduce the second argument to the null list rather than the first，we would have found the going much tougher．The list processing primi－ tives favor working on the beginning of a list，hence the first argument of＇append＇．This sort of intuition comes from practice with using the primitives．

Although it is relatively easy to prove that＇append＇is correct，we will convince ourselves by working the reduction of append（＜1 2＞，＜3 4 5 \rangle ）．

$$
\begin{aligned}
& \Rightarrow \text { cons(1, apoend (〈2〉, 〈3 } 4 \text { 5〉)) } \\
& \Rightarrow \text { cons (1, [null(<2>) } \rightarrow \text {... } \\
& \text { cons(<2>[1], append(rest(<2>), }\langle 34 \text { 5〉))] } \\
& \Rightarrow \text { cons(1, cons(2, append (〈〉, 〈3 + 5〉))) } \\
& \Rightarrow \text { cons(1, cons(2, null(〈>) ->〈3 } 45\rangle \text { | ...])) } \\
& \Rightarrow \text { cons(1, cons(2, 〈3 } 4 \text { 5〉)) } \\
& \Rightarrow \operatorname{cons}(1,\langle 2345\rangle) \\
& \text { => 〈1 } 234 \text { 5〉 }
\end{aligned}
$$

As final example，we will define the function＇equal＇which returns＇true＇if its two arguments are equal atoms or lists （i．e．have the same structure）．（Recall that＇$=$＇only works on
atoms, hence it cannot be used to compare lists.) That is

$$
\left.\left.\begin{array}{l}
\text { equal }\left(\begin{array}{cccccc}
\langle 5 & \langle 8 & 16\rangle & 25\rangle, & \langle 5 & \langle 8 \\
16\rangle & 25\rangle
\end{array}\right) \Rightarrow \text { true } \\
\text { equal }(\langle 5\langle 8 \\
\langle 5\rangle
\end{array} \mathbf{2 5}\right\rangle,\langle 5\langle 8\rangle 16<25\rangle\right) \Rightarrow \text { false }
$$

As in the previous examples, the stopping point of our recursion will be those cases that we can already solve. Then, we will attempt to reduce the general case to these simpler cases. A good place to begin in any list processing problem is the null list, and this is the case here; all null lists are equal:

$$
\text { equal }(\rangle,\langle \rangle) \Rightarrow \text { true }
$$

Another good place to begin in list processing is with atoms. This is particularly true in this case, since the '=' relation can be used to test equality of atoms. For example,

$$
\begin{aligned}
& \text { equal }(5,5) \quad \Rightarrow 55=5 \Rightarrow \text { true } \\
& \text { equal }(5,6)
\end{aligned} \Rightarrow 5=6 \Rightarrow \text { false }
$$

These cases can be written more generally:

$$
\begin{aligned}
& \text { equal }(x, y) \Rightarrow \text { true, if } x \text { and } y \text { are both null } \\
& \text { equal }(x, y) \Rightarrow \text { false, if } x \text { or } y \text { is null, but not both } \\
& \text { equal }(x, y) \Rightarrow \text { true, if } x \text { and } y \text { are atoms and } x=y \\
& \text { equal }(x, y) \Rightarrow \text { false, if } x \text { and } y \text { are atoms and } x \neq y \\
& \text { equal }(x, y) \Rightarrow \text { false, if } x \text { or } y \text { is an atom, but not both }
\end{aligned}
$$

It remains to reduce the general case to these solved cases. Consider 'equal(x, y)', where x and y are non-null lists (if they aren't then the problem is solved). Now, if x and y are non-null lists, what are the conditions that must be satisfied to make them equal? Clearly, they must have the same number of slements and each of their elements must be equal'. Since both lists are non-null we know that they both have a first element. Hence, we can compare the first elements with 'equal', delete them from the lists and then compare the rest of the lists with 'equal'. This is the simplification:

$$
\begin{aligned}
\text { equal }(x, y) \Rightarrow & \text { equal }(x[1], y[1]) \text { and equal(rest }(x) \text {, rest }(y)), \\
& \text { if } x \text { and } y \text { are non-null lists. }
\end{aligned}
$$

Putting our results together allows a direct translation to the lambda calculus:

$$
\begin{aligned}
& \text { equal } \Rightarrow \lambda x y \text { atom(} x \text {) -> }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { atom }(y) \text {-> false } \\
\text { null }(x) \rightarrow \text { null }(y)
\end{array} \\
& \text { null (} y \text {) }->\text { false } \\
& \left.\begin{array}{l}
\text { equal }(x[1], y[1]) \rightarrow \text { equal(rest(} x) \text {, rest }(y)) ~ \\
\text { false }]
\end{array}\right\}
\end{aligned}
$$

The＇atom＇tests are done first since they work on all values （atoms and lists）while＇null＇only works on lists．

EXERCISE：Write out the reduction of equal（＜5＜8 16＞25＞，＜5＜8 EXERCISE：Define the function＇member＇such that member (x, y) is true if and only if x is an element of the list y ．That is member（C，〈A B C D〉）\Rightarrow true，but member（C，〈A 〈B C〉 D〉）\Rightarrow false．To show that your definition works，reduce member（7，＜3 5 7 9＞）．
EXERCISE：Suppose y is a list of pairs，ie．it has the form

$$
\left\langle\left\langle a_{1} \quad b_{1}\right\rangle\left\langle a_{2} b_{2}\right\rangle \cdots\left\langle a_{n} b_{n}\right\rangle\right\rangle
$$

Define the function＇ $\operatorname{assoc}(x, y)$＇to be the first b_{i} for which $x=a_{i}$ ．For instance，

$$
\begin{aligned}
& \text { assoc ('b', <<'a' 1><'b' 3><'c' 5>>) => } 3 \\
& \operatorname{assoc}(7,\langle\langle 10\rangle\langle 7 \text { 9〉<2 6><7 3>>) } \Rightarrow 9
\end{aligned}
$$

EXERCISE：Suppose x and y are lists of the same length and a is a list of pairs．For instance，

Define＇pairlis（x，y，a）＇to be the list resulting from adding the pairs $\left\langle x_{i} y_{i}\right\rangle$ to the front of $a, e . g .$,

$$
\left\langle\left\langle x_{1} y_{1}\right\rangle \cdots\left\langle x_{m} y_{m}\right\rangle\left\langle b_{1} c_{1}\right\rangle \ldots\left\langle b_{n} c_{n}\right\rangle\right\rangle
$$

EXPRCISE：Write the list processing primitives（first，rest， cons，atom，null）using linked lists in Pascal or some other language you are familiar with．

I．3．7 Syntactic Sugar．

With the list processing primitives we really have a small， but usable，programming language．In fact，the language we have
is very similar to the list processing language IISP. which we will be discussing later. To make the programming language aspects of the lambda calculus more obvious we will "sugar" it with an Algol-style syntax. First, we will replace ' λ ' with 'proc' (for 'procedure'), we will write the bound variables in parentheses separated by commas (i.e. ' $x y^{\prime}$ ' becomes ' (x, y) '), '\{' and '\}' become 'begin' and 'end', '['and ']' become 'if' and 'endif', ' - ' becomes 'then' and '|' becomes either 'elsif' or 'else'. When we make these substitutions in the 'equal' function we get:

```
Equal => proc(x,y)
    begin
        if atom(x) then
        if atom(y) then }x=y\mathrm{ else false endif
        elsif atom(y) then false
        elsif null(x) then null(y)
        elsif null(y) then false
        elsif equal(x[1], y[1]) then equal( rest(x), rest(y))
        else false
        endif
        end
```

These conventions are summarized in the following diagram.

We will use the acronym 'ELC' to refer to the extended lambda
calculus, i.e. to the pure lambda calculus $\frac{\text { extended } b y \text { the }}{\text { bo }}$, integer, Boolean and list data types and extended by the syntactic sugar introduced in this chapter.

ELC is quite similar to the progremming language LISP. Approximate equivalences are shown in the following chart (the differences are fairly subtle and are discussed in a later chapter).

The LISP program corresponding to our 'equal' function is:

```
    (equal (lambda (x y)
    ((atom x) (cond
                                    ((a\operatorname{NIL})),)}(\mathrm{ (eq x y))
        ((atom J) IIIL)
        (((null x) (null y))
        ((null y)NIIL)
```

You can now see that languages can have very different appearances even though they are the same underneath. We will find that most programming languages are sugared versions of the lambda calculus.
I. 3.8 local $\frac{\text { declarations }}{\text { dian }} \frac{\text { in }}{\text { re to }} \frac{\text { mathematical }}{\text { write an express e }}$ ion such as . If a mathemati-

$$
\frac{\left(\frac{a x+b}{x}-a\right)^{m+n-2}}{\left(\frac{a x+b}{x}\right)^{m}}
$$

he would probably factor out the common subexpression

$$
\frac{a x+b}{x}
$$

and give it a name, say 'u':

$$
\frac{(u-a)^{m+n-2}}{u^{m}} \text { where } u=\frac{a x+b}{x}
$$

This has two advantages. First, it reduces the size and complexity of each expression so that they can be more easily assimilated by the eye. Second, by using the same variable 'u' in both places it makes it more obvious that it is the same identical
expression in both places. Now, we can accomplish the same thing in the lambda-calculus. In particular.

$$
\lambda u\left\{\frac{(u-a)^{m+n-2}}{u^{n}}\right\}\left(\frac{a x+b}{x}\right)
$$

reduces to

$$
\frac{\left(\frac{a x+b}{x}-a\right)^{m+n-2}}{\left(\frac{a x+b}{x}\right)^{-}}
$$

 application:

$$
\mathbb{E} \text { where } v=x \Rightarrow \lambda v\{\mathbb{E}\}(x)
$$

For instance, an expression such as this (which is taken from the interpreter discussed later):

$$
\operatorname{eval}(f[1][2], \text { append }(f[2], \text { cons (x, }\langle>)))
$$

could now be written

```
eval( f[1][2],NewInv )
    where NewEnv = append( f[2], cons(x,\langle>))
```

By analogy with functions of several arguments, it is possible to allow compound "where" declarations:

$$
\begin{aligned}
& \text { E where } v_{1}=x_{1}\left\{\begin{array}{l}
\text { and } \\
\Rightarrow \\
\Rightarrow v_{1} \\
v_{2}
\end{array}=x_{2} \text { and } \cdots\right\}\left(x_{1}, x_{2}, \ldots\right)
\end{aligned}
$$

For instance, the expression fragment

$$
\text { elsif } e[1]=\text { 'var' then } a[e[2]][e[3]]
$$

can be more readably written

$$
\begin{gathered}
\text { elsif } e[1]=\text { 'var' } \quad \text { then } a[e p][\mathrm{vp}] \\
\text { where } e p=e[2] \\
\text { and } v \underline{v}=e[3]
\end{gathered}
$$

There is another way in which mathematicians use variable names. If a mathematician is going to use an expression in a number of following lines then he will often give it a name with a phrase such as "Let u be $\frac{a x+b}{X}$." This style of definition is easily defined in the lambda-calculus:

$$
\text { let } v=x \text { in } E \Rightarrow \lambda v E\}(x)
$$

or in general

$$
\frac{\text { let }}{\Rightarrow} v_{1}=x_{1} \text { and } v_{1} v_{2} \cdot \cdots\{\Xi\} x_{2}, \frac{\text { and }}{\cdots} \cdot . . \text { in } \Xi
$$

Whether 'let' or 'where' is used is largely a matter of taste and style. In general, 'where' is appropriate when 'E' is one line or less and 'let' is appropriate when ' E ' is more than one line. As an example of 'let', the expression fragment

```
elsif e[1] = 'call' then
    aoply} eval(e[2], a), evlis( rest(rest(e)), a))
```

can be written

```
elsif e[1] = 'call' then
    let closure = eval(e[2],a)
    and actuals = eval( rest(rest(e)), a) in
        apply( closure, actuals)
```

The use of names such as 'closure' and 'actuals' makes the program more readable, albeit, more verbose.
I.3.10 terminology It will be recalled that in the abstraction ' $\lambda x\{E\}$ ' the scope of ' x ' was defined to be ' E '. By analogy, the scope of the variables defined by a 'let' or a 'where' is defined to be the body of the corresponding abstraction. For instance, in the previous example, the scope of 'closure' and 'actuals' is the following line. To put it another way, the scope of a variable is the region of an expression over which it has meaning. This is shown in the following diagrams:

let $v=x$ in E
scope of 'v'

Consider the following 'let' or 'where' expressions:
E where $v_{1}=x_{1}$ and $v_{2}=x_{2}$ and \ldots
let $v_{1}=x_{1}$ and $v_{2}=x_{2}$ and \cdots in E

The ' $v_{i}=x_{i}$ ' parts of these are called definitions, declarations or bindings (because they bind a bound variable to its value). The 'let' and 'where' constructs themselves are called blocks (particularly in languages that delimit them with begin-end pairs). These constructs occur in most languages although in a variety of forms. For instance, the Algol-68 block
begin $i=3 ; j=m+1$;
i/j
end
means the same as the lambia-calculus block
let $i=3$ and $j=m+1$
in i / j
In languages that use begin-end pairs to delimit blocks, like Algol-68, the declarations (' $i=3 ; j=m+1$ ' in this case) are collectively known as the head of the block, and the rest of it is known as the body of the block. Thus,

A set of Pascal declarations such as
function $g(y$:integer $)$: integer;
const $i=3$;
function $f(x:$ integer $)$: integer;
begin $f:=x^{*} i+1$ end;
begin $g:=f(y)+1$ end;
begin ... end
means the same as the lambda expression

$$
\begin{aligned}
& \text { let } g=\operatorname{proc}(y) \text { begin } \\
& \text { let i }=3 \text { in } \\
& \text { let } f=\operatorname{proc}(x) \text { begin } x^{*} i+1 \text { end in } \\
& \text { fly) }(y) \text { end }
\end{aligned}
$$

Of course, it is necessary to specify types in Pascal declarations, but not in lambda-calculus bindings.

As a final example of blocks in the lambda-calculus, consider the lambda expression

$$
\lambda i\left\{\lambda f\{\lambda i\{f(i)\}(2)\}\left(\lambda x\left\{x^{*} i\right\}\right)\right\}(3)
$$

The meaning of this expression can be clarified by using blocks:

$$
\begin{aligned}
& \text { let } i=3 \text { in } \\
& \text { let }=\operatorname{proc}(x)\{x * i\} \text { in } \\
& \text { let i }=2 \text { in } \\
& f(i)
\end{aligned}
$$

Although there is no exactly corresponding Pascal program, this lambda expression can be translated into Algol-68:

```
begin i \(=3\);
    begin \(f=\operatorname{proc}\left(x:\right.\) int) int: ( \(x^{*}\) i);
        \(\underset{f(i)}{\operatorname{begin}} i=2 ;\)
        end
        end
end
```

I.3.11 compound declarations Consider the two expressions

scope of v
let $v_{1}=e_{1}$ and $v_{2}=e_{2}$ in e_{3}
scope of both v_{1} and v_{2}^{4}
The second of these, which is called a compound declaration, is much more than merely a shorthand form of the first. Observe that in the first expression e_{2} is within the scope of v_{1}, Whereas in the second expression the scope of both v_{1} and v_{2} is just e_{3}. For instance, while

$$
\text { let } i=3 \text { in let } x=A[i] \text { in } B
$$

has the same effect as

$$
\text { let } x=a[3] \text { in } B
$$

the expression

$$
\text { let } i=3 \text { and } x=a[i] \text { in } B
$$

is illegal (ie. doesn't make any sense), unless, of course, 'i'
is bound in some surrounding scope. This can be seen more clearly by translating the two expressions back to pure lambda notation. The first becomes:

which is correct, and the second becomes:

$$
\lambda i x\{B\}(3, A[i])
$$

scope of 'i' and 'x' Unbound occurence of 'i'
Which is not. The most important use of compound declarations is in connection with recursive declarations, discussed next.
I.3.12 recursive declarations Consider a declaration such as let fac $=\operatorname{proc}(n)\left\{\left[n=0 \rightarrow 1: n^{*} \operatorname{fac}(n-1)\right]\right\}$ in B
\qquad
This is illegal, as we can see by putting it in pure lambda notalion:

The recursive occurence of 'fac' is unbound. This is because the value on the right of a binding is evaluated in the surrounding environment. This is clearly an unsatisfactory situation. Although there are ways of handling recursive definitions in a purely applicative way, they involve complicated mathematics and so will not be discussed here. Instead, the technique to be used will require some of the imperative facilities discussed in the next chapter. Although the actual technique to be used will not be described until the next chapter, recursive definitions will be used in this chapter.

A declaration of the form

```
let rec v=e in B
    scope of 'v'
```

is called a recursive declaration (or definition or binding) because the scope of 'v'includes 'e'. Therefore 'e' can make use of 'v'. Similarly, compound recursive declarations will be defined so that in

the scopes of v_{1}, v_{2}, \ldots include e_{1}, e_{2}, \ldots. This allows the definition of mutually recursive functions, for instance:

$$
\begin{aligned}
& \text { let rec val }=\operatorname{proc}(e, a)\{\ldots \operatorname{apoly}(\ldots) \\
& \text { and rec Apply }=\operatorname{proc}(f, x)\{\ldots \text { oval }(\ldots) \ldots \\
& \text { in } . . .
\end{aligned}
$$

Chapter 4

I. 4 Implementing The Lambda Calculus

I.4.1 goals defined.

You have probably found reducing lambda calculus expressions to be a tedious and error-prone process. These characteristics, plus the fact that reduction is a mechanical procedure, makes the computer the ideal tool for doing these reductions. There are several reasons for this. When people work for a long time at a mechanical task, they become tired and begin to make mistakes. Computers aren't like that: once programmed correctly they will perform a task without fatigue. Another advantage of using computers to do reductions is that they can do them so fast. The mechanical, symbolic processes of a caiculus are exactiy what computers handie best, since a computer is just a very fast symbol manipulator.

Why are we so concerned about reducing lambda exoressions, anyway? As you've seen in the previous chapter, languages with very different appearances are often just "suqared" versions of the lambda calculus. You've also been told (and you will see it in Part II) that most common programming languages are, underneath, just the lambda calculus. Therefore, if you study how to implement the lambda calculus, you will be learning how to implement most of the common programming languages. The advantage of using the lambda calculus, as opposed to Pascal or Ada, for instance, is that the lambda calculus is so simple. The implementation techniques are much easier to understand in the clear and uncluttered context of the lambda calculus. Once understood, they are easy to extend or modify so that they accomodate the complexities of "real" languages.

I.4.2 mechanical reduction

Having established that imolemenation of the lambda caiculus is important, we can proceed to study how we might go about it. The obvious approach is to write a program that duplicates our hand reduction procedures. This is easier said than done, however.

Let's investigate how we might go about automating the reduction process. When we reduce a lambda expression using the Standard Reduction Order, we do it by apolying the substitution rule over and over, until we are forced to stop by an immanent
collision of variables. We then use the reriaming rule to change the offending bound variable to one that won't cause a collision, and continue with our substitutions. Except on very complex Iambda expressions it is generally easy to see if there will be a coliision of variables. This sort of pattern recognition process is the sort of thing that is very easy for people and very hard Eor computers. This is because we can see the collision at a glance, while the computer must do the check with an exhaustive search. That is, in order to determine if it is legal to substitute arı actual parameter for a particular (free) occurence of a variable, it is first recessary to compute a list of the free variables in the actual parameter. Doing this requires scanning the expression and noting all the binding sites and their scopes. It is then necessary to compute all the variables whose scopes contain the prospective substitution site, and to determine if any of these variables are the same as free variables of the actual parameter. This is a expensive check to perform and intricate and tricky to program.

Another reasor to avoid a mechanical implementation of the reduction procedure is that it would be slow. As you've probably observed in your own reductions, this process involves a lot of recopying of the formulas. This is something that most computers don't do well. For these reasons we will investigate an implementation that involves reither textual substitution ror a complicated collision-of-variables test.
I. 4.3 coritext

Let's take another look at the way people use variables. Suppose a mathematician reads a phrase such as, "Let $\theta=2 \pi t$." What happens wher he later reads a formula such as $" 2 \sin \theta \cos \theta " ?$ Does he meritally transform this into

$$
2 \sin (2 \pi i t) \cos (2 \pi t t)
$$

by performming the substitutions? Of course rot. Having been cold "Let $\theta=2 \pi t t$ ", he remembers this fact and associates θ with 2\#ft. We say that he has bound θ to $2 \pi f t$. When he reads the formula "2sin $\theta \cos \theta$ " he interprets it contextually, i.e., in the context of the relevent meanings of 2 , \sin , \cos and 9 . It is not necessary for him to do a textual substitution.

You will remember that the reasor for the collision-ofvariables restriction on the substitution rule was to preverit altering the meaning of an expression by changing the context of its interpretation. In this case the context is just a set of bindings, i.e.. associations between variables and their values. Ir the next section you will see how to keep track of the context of a formula in such a way that it can be evaluated without the
use of substitution, renaming or collision tests.
I.4.4 hard evaluation

In this section we will study the use of the context or environment of a formula - i.e., the set of bindings that give that formula its meaning. These will be represented by diagrams of the form:

θ	$2 \pi \mathrm{ft}$	
	$2 \sin \theta \cos \theta$	

This expreses the fact that the context of the formula ' $2 \sin \theta \cos \theta^{\prime}$ is the binding of θ to $2 \pi \mathrm{I}^{2} \mathrm{t}$.

As our first example, let's consider the evaluation of ' $x+1$ ' in a context in which x is bound to 2 , ie.,

x	2	
$x+1$		

Since this is the context of the entire formula, it is also the context in which each of its subtormulas must be interpreted. Hence, this can be reduced to

Now, the interpretation of x in the context $x=2$ is just 2 , so we have

and the interpretation of 1 in any context is 1 , so

$$
2+1
$$

or 3. Similarly, we can evaluate $x \cdot y$ in the context $y=3, x=2$.

Next, weill take a more complicated example, the evaluation of ' $\lambda y\left\{x^{\prime} y\right\}(x+1)$ ' in the environment $x=2$:

| $x \mid 2$ |
| :--- | :--- |
| $\lambda y\{x \cdot y\}(x+1)$ |

Before we can bind y to $x+1$ we have to know the value of $x+1$ (in context, of courses. Herice, we will separate the two parts of the application:

x	$2 \mid$
$\lambda\{x \cdot y\}$	

Notice that we have kept the formula ky \{x.y\} ~ i n ~ c o n t e x t ~ - ~ o t h e r ~ - ~ wise it would lose its meaning. Continuing our evaluation, we previously saw that $x+1$ in the context $x=2$ evaluates to 3 , so we have:

x	2	
$\lambda\{x$		$y\}$

What is the effect of $\lambda y\left\{x^{\circ} y\right\}(3) ?$ It is to add the binding $y=3$ to the context of interpretation:

y	3
x	2
$x^{\circ} y$	

We have previousiy seen that this reduces to 5.
We will expand on the previous example a little. In that example we applied to the argument 3 the function dy \{x•y\} ~ i n ~ t h e ~ context $x=2$, i.e., the fuririction represented by

$x \mid 2$	
$y\{x \cdot y\}$	

Next we will consider the evaluation of $\dot{f}(3)$ in a context that binds f to the above function. The result, of course, should be the same. We start with

We must evaluate the operator and operand separately:

Constants are independent of the context, so the operand's value
is 3. The operator is a variable, 5 , which must be interpreted in the context. When when we substitute this definition we get:

x	2
$\lambda y\{x$	$y\}$

which we have already seen is 6 . Notice that we have always preserved the meaning of $k y\{x \cdot y\}$ by bringing the context along with it. We are now at the point where we can formally state our evaluation rules.

I.4.5 constants

Since the value of a constant does rot depend on its con text, we evaluate it by eliminating the context.

$$
\Rightarrow \quad k
$$

for k a constant.

I.4.5 variables

In contrast to constants, the value of a variable depends entirely on the context. we find the value of a variable by looking it up in the list of birlirigs in the coritour (by corivention, we take the first occurence of the variable in that list). The rule is:

where v is a variable.
If x is not bound in this context, then it is free (i.e., so far as we know it has no value).

I.4.7 abstractions

An abstraction often will have free variables that are defined in its context. If this context is not preserved then the abstraction will change its meaning. Therefore, we will leave an abstraction unevaluaced until it is ready to be applied to some arguments. Wee show this delay of evaluation:

(no change)

I.4.8 applications

Consider an application such as 'f(x+i)'. Standard Reducecion Order says that in order to determine its value it is first necessary to determine the value of its operand, 'xii', and its operator, 'f'. Of course the value of each of these is found by interpreting it in the context of the entire application:

\Rightarrow

Of course, there is more to the evaluation of applications than this. If the application is to make sense then the evaluation of the operator must result in an abstraction (with its context). That is, we will get a result like:

(A)

Now, this means that C is the context of the abstraction $\lambda x\{E\}$. The application above is evaluated by adding the binding $x=A$ to the context C, and then using this as the context in which to interpret E. Summarizing, the rule is:

(A)
=>

I.4.9 primitive apolications

We have already seen several examples of the evaluation of primitive applications, such as 'xii' and ' x ' y^{\prime} '. Ir each of these it was first necessary to evaluate the operands of the primitive. This leads to the general rule:

=>

I.4.i0 conditionals

Recall that we specified a deviation from Standard Reduction Order for conditionals. We said that we would first reduce the condition ard then, depending on whether the result was 'true' or 'false', reduce either the true branch or the false branch. This avoids errors in situations where the other branch is not
reducible. Reducing the condition is accomplished by the rule:

When the condition has evaluated to 'true' or 'false' the follow ing rules interpret in context the corresponding branch.

I.4.1i example of hand evaluation

As an example of these procedures we will evaluate
let $i=3$ ir
let $E=\operatorname{proc}(x)\left\{x^{\cdot i}\right\}$ in
let $i=2$ in
Eli)
which we saw in Chapter 3. The crucial aspect of this example is that the context of $\operatorname{oroc}(x)\left\{x^{\cdot} i\right\}$ is $i=3$. We can see that this context is preserved in the following figure. In this example we first eliminate syntactic sugar and write the above formula:

$$
\lambda i\left\{\lambda \in\{\lambda i\{E(i)\}(2)\}\left(\lambda x\left\{x^{\cdot} i\right\}\right)\right\}(3)
$$

I.4.12 representation defined

We will next write an interpreter for ELC (the extended lambda calculus) in ELC. Since we will be using ELC, and the only primitives we have in ELC are for manipulating lists, we will have to encode lambda expressions as lists so that they can be manipulated. This is the representation we will use:

Figure l. Example of Hand Evaluation
It is necessary to append the "tag word" 'const' to the beginning of constants to prevent confusion, for instance, between the lists representing variables ard constant lists that happen to begin with the string 'var'.

We will look at several examples of lists that represent lambda expressions. Fine expression

$$
f(1,2)
$$

is represented by the list:

$$
\langle\text { 'call' <'var' 't'><<'const' i><'const' } 2\rangle\rangle\rangle
$$

The primitive application

$$
\operatorname{cons}(y,\langle \rangle)
$$

is represented by

$$
\langle ' o r i m ' ~ ' c o n s '\langle<' v a r ' ~ ' y '\rangle\langle ' c o n s t ' ~<>\rangle>\rangle
$$

For a more complicated example, consider:

$$
\lambda x y\{\operatorname{cons}(x, \operatorname{cons}(y,<>))\}
$$

This is represented by

$$
\begin{aligned}
& \text { <'lambda' <'x' 'y'> } \\
& \text { <'prim' 'cons'<<'var' 'x'> } \\
& \text { <'prim' 'cons'<<'var' y'> } \\
& \text { <'cost' <>\gg>>>> }
\end{aligned}
$$

I.4.13 field accessing functions

Suppose L is a list representing an abstraction, e.7.,
<'lambda' <'x' 'y'> <'var' 'x'>>

It we wish to extract the bound variables tron L , we can do this by $[$ [2]:

$$
L(2) \quad \Rightarrow \quad\left\langle x^{\prime} \quad y^{\prime}\right\rangle
$$

Similarly, the body of the abstraction can be extracted by fill:

$$
L[3] \Rightarrow\left\langle ' v a r ' \quad x^{\prime}\right\rangle
$$

Both of these operations will be more readable if we define the field accessing functions "bus" and "body" to get the bound variables and body, respectively, of an abstraction:
let bus $=\operatorname{proc}(x)\{x[2]\}$
and body $=\operatorname{proc}(x)\{x\{3]\}$ in \ldots
Then we can write

```
hus([) => <'x' 'y'\rangle
body(L) => <'vari 'x'>
```

It will aiso be usetul to have a Eunction 'is-lambra' to teil us it a list represents an abstraction:

```
let is-Iambda = oroc(x){x[I}= 'lambda' } in ...
```

This tunction determines it a list reoresents an abstraction by chocking it its "taq word" is 'Iambia'. For instance,

```
is-lambda(L) \(\Rightarrow\) true
is-lambda(<'const' 2>) \(\Rightarrow\) talse
```

De course, we will want functions like 'bodv' and 'istiambda' tor each of the iists which reoresent a tyoe of lambda expression. Rather chan defirie each separately like we did above, we will use the abbreviation
structure lambia: (bvs, hody)
to mean that lists whose first element is 'lambda' will have two more elements, selected by the tunctions 'bvs' and 'body'. This is called a structure definition and is equivalent to the declaracion:

```
let is-lambra = oroc (x){ x {1]='lambda' }
and bus = oroc (x){x[2]}
and hody = proc (x){x[31}
irt ...
```

The structure declarations for the iists that reoresent lambतa expressions are given in the following figure. The definition of these Eieid accessing functions will make our interoreter much more readable.

```
structure const: (constval)
structure var: (id)
structure lambda: (bvs, body)
struceure cali: (rator, rands)
structure prim: (rator, rands)
seructure it: (cond, t-branch, f-hranch)
Figure 2. Lists Qepresenting Lambda Exoressions
```

I.4.i4 association Iists.

So that environments (contexts) can he manipulated by the primitives with which we have equipoed the lambda calculus, we will detine a representation, called an association list (or a-
list), for environments. An association list is just a list wherein each element of the list is a pair containing the name of a variable and its value. For instance, an association list representing an environment in which $x=2, y={ }^{\prime}$ Monterey' and $z=<0$ l 2) is:

$$
\left\langle\langle x ^ { \prime } \geqslant \rangle \left\langle ' y^{\prime}\right.\right. \text { 'Monterey'><'z' <0 1 2>>> }
$$

We will define several primitive functions on association lists. The function 'assoc' is defined so that 'assoc (x,a)' is the result ot looking up that variable name x in tho association list a.

> let rec assoc $=$ proc (x, a) begin
> it equal $(x$, a!l][l]) then a!il(2]
> else assoc $(x$, rest (a)) endit end.

For instance, it L is the $a-l i s t$

$$
\left\langle\left\langle x^{\prime} 2\right\rangle\left\langle ' y^{\prime} \quad \text { Monterey'> <'z' <n } 1 \text { 2>> }\right\rangle\right.
$$

then

$$
\text { assoc ('y', } \mathrm{y}) \Rightarrow \text { 'Monterey'. }
$$

The function 'pairlis' is a little more complicated; it is used for birding variables to values arr addirn chem to an association list. That is, it x is a list ot variable manes y is a list of values arid a is an association list, then 'pairlis(x,y,a) is an association list in which each element of x is paired with the corresponding element of y and appended to the front of a. For instance,

```
pairlis( <'w' 'cost'>, < < 25>, L )
```


To see how this can he done, notice that if 'a' is an $a-1 i s t$, and <xi gi> is a pair representing a binding, then
cons(<xi yip>, a)
will add this pair to 'a'. The resulting definition of 'oairlis' is:

$$
\begin{aligned}
& \text { let rec pairlis }=\operatorname{proc}(x, y, a) \text { begin } \\
& \text { it null }(x) \text { then } a \\
& \text { else cons (nair } x[l], y[l]) \text {, } \\
& \text { where pair }=\operatorname{proc}(x, y)\{\operatorname{cons}(x, \operatorname{cons}(y,\langle \rangle)) \text { end if end }
\end{aligned}
$$

I.4.15 closures

We have previously seen that it is necessary to keep an abstraction's context with that abstraction in order to preserve its meaning. We have symbolized this with diagrams like:

| x | 3 |
| :---: | :---: | :---: |
| $\lambda y\{x+y\}$ | |

We will now investigate in more detail the nature of this construct.

A formula is called closed if it has no free variables, for instance,

$$
\lambda x\{\lambda y\{x+y\}\}(3)
$$

Closed formulas are important because their interpretation is completely independent of context. A formula is called open if it has one or more free varimbsu. Hence, open formulas are dependent or their context for their iriteroretation. This fortula is open:

$$
\lambda y\{x+y\}
$$

An open formula car be closed by providing biridirigs for its free variables. For instance, the above open formula can be closed by binding x to 3 :

$$
\text { let } x=3 \text { in } \lambda y\{x+y\}
$$

or

$$
\lambda x\{\lambda y\{x+y\}\}(3)
$$

This is called the closure of the formula $\lambda y\{x+y\}$. More generally, a closure is a formula together with bindings for all of its free variables. This is just the construct we have illustraced by

x	3
$\lambda y\{x+y\}$	

Our next task will be to determine how we can implement closures using lists. The key is our diagram; a closure has two parts: an abstraction aril its context. These parts are traditionally called the ip and ep, which stand for instruction part and environment part, respectively. We will reoresent a closure by a structure with two fields called 'ip' and 'ep'. The ip will be a list that represents an abstraction and the ep will be an a-list
represerting a context. This is summarized by

structure closure: (ip, ep)

The function for constructing closures is defined:

```
let closure = proc(ip,ep){
    cons( 'closure', pair( ip, eo )) }
```

Thus, we can make a closure from the abstraction f and the environment e by closure(f,e):

$$
\text { closure(f,e) } \Rightarrow \text { <'closure'fe> }
$$

We can test if something is a closure by is-closure(c) and extract its parts by ip(c) and ep(c). The closure data type is described in the following figure.

```
ip(closure(f,e) ) = f
ep(closure(f.e) ) = e
closure(ip(c), ep(c) ) = c
is-ciosure( closure(f,e) ) = true
where is-lambda(f)
and e is an a-list
arid is-closure(c)
Figure 3. The Closure Data Type
```

I. 4.15 mechanical evaluation.
'We will define a function 'eval' such that if 'e' is a list representing a lambda expression arı 'a' is an association list representing an environment, then 'eval(e,a)' is the result of evaluating that lambda expression in that environmert. Thus, 'eval(e,a)' corresponds to
\qquad
a
e

The structure of our interpreter will be a large conditional so that we can handle lambda expressions case by case. In skeleton form it is:

```
Iet rec Eval = proc(e,a)
    begin
        if is-corist(e) then...
        elsif is-var(e) then ...
        elsif is-lambda(e) then ...
        elsif is-cail(e) then ...
        elsif is*orim(e) ther,...
        elsif is-if(e) therı...
        eridit
    end
in ...
```

We will consider each of these cases in turn. In discussirg them, it will be helpful if you refer back to the field names defined in figure 2 .

The simplest case, as we have already seen, is constarits, because they do not depend on the context for their interpretation. In this case we just extract the constant value from the list and returrit:

```
if is-const(e) then const-val(e)
```

The next simpier case is variabies. The result of evaluating <'var' $x\rangle$ is just the resule of looking up x in the current environmertt (which is the a-list bound to 'a'):
elsif is-var(e) then assoc(id(e), a)

As discussed in the previous sections, the rule for abstractions will form a closure by combining the abstraction and its environmerit of defirition (context). This is accomplished by:
elsif is-lambda(e) then closure(e,a)
Wher this closure is applied to its oderands by a application, the 'apply' furiction will extract the environment of definition (ep) from the closure ard use it as the basis for coristructing the environmerit of evaluation for the body of the abstraction (ip).

Next we will consider the case of orimitive applications. If e is a primitive appiication then rator(e) is its operator, which is a string such as 'first' or 'cons', arid rands(e) is a list of its operands. In our hand evaluation procedure, we first interpreted the operands in context and then performed the primitive operation. Here we will use an auxilliary function 'evils' to evaluate the operands and an auxilliary function 'apoly-prim' to perform the operation:

```
elsif is-prim(e) ther apply-orim( rator(e), actuals)
    where actuals = evlis( rands(e), a)
```

Eviis is a simple recursive procedure that evaluates each element of its argument list and returns a list of the results:

Iet rec eviis $=\operatorname{proc}(L, a)$ begin
if null(L) then <>
else cons(eval(L[ll, a), evlis(rest(L), a)) endif end in ...
The definition of 'apply-prim' is simply a conditional for handing each of the primitive operations:

```
let apply-prim=proc(i,x) begir
    if f='first' then first(x[l])
    elsif f='rest' then rest(x[l])
    elsif f='cons' then cons( x[l], x[2])
    elsif f='atom' then atom(x[i])
    elsif f='nuli' then nuli(x[I])
    endif end in ...
```

Of course, if we want additional primitive operations, we can just add clauses for handing them to the defirition of 'applyprim'.

The application of non-orimitve operations is a similar process. The operands must be evaluated using 'evlis', as was done for primitive applications. Since the operator is also a formula, it also must be evaluated in context. This evaluation must yield a closure. The closure is then applied to the actual parameters. That is:

```
elsif is-call(e) then apply( closure, actuals)
    where closure = eval( rator(e), a)
    and actuals = evlis( rands(e), a)
```

Next, we must consider what 'apply' has to do to complete the function call. In our hand evaluation procedure we paired the bound variables with the corresponding actual parameters and added these bindings to the context of the abstraction. This new context was used as the environment for evaluating the body of the abstraction. We will do the same here.

If b is the list of bound variables, x is the list of actual parameters and c is the context of the abstraction, then pairlis (b, x, c) is the environmert in which to evaluate the body of the abstraction. The 'apply' function that accomplishes this is:
let rec apply $=$ proc (closure, actuals) begirı
let $a b s=i p(c l o s u r e) ~ i r ı$
let env = pairlis(bvs(abs), actuals, ep(closure)) in eval(body(abs), env) end

The orily case left to be analyzed is the conditiorial. Irı our hand evaluation procedure we interpreted the condition in context to get a truth value. We ther used this vaiue to determine whether to evaluate the true branch or the false branch of the conditional. This is exactly what needs to be done in 'eval':

```
elsif is-if(e) then
    if eval( corid(e), a)
        ther eval( t-branch(e), a)
        else eval( E*branch(e), a) endif
```

This completes the definition of 'eval'; the complete interpreter is shown in the following figure.

```
let rec Eval = proc(e,a) begin
    if is-const(e) therl const-val(e)
    elsif is-var(e) ther, assoc(id(e), a)
    elsif is-lambda(e) therı closure( e, a)
    elsif is-prim(e) then apply*prim( rator(e), actuals)
        where actuals = evlis( rands(e), a)
    elsif is-call(e) ther, apply( closure, actuals)
        where closure = eval( rator(e), a)
        and actuals = evlis( rands(e), a)
    elsif is-if(e) then
        if eval( cond(e), a) then eval( t-brarıch(e), a)
        else eval( f-branch(e), a) endif
    eridif erid
and rec eviis = proc(L,a) begin
    if ruli(L) then <>
    else cons( evai([[l],a), evlis(rest(L),a) ) eridif end
and rec apoiy = proc( closure, actuals) begin
    let abs = ip(closure) in
        let env = pairlis( bvs(abs), actuals, ep(closure)) in
                eval( body(abs), eriv) end
and apply-prim= proc(f,x) beqin
    it f='Eirst' then first(x[i])
    elsif f='corns' then cons( x[i], x!21)
    elsif...
    eridif end
irl ...
Figure 4. A-List Eval
```

The interpreter is very similar to the interpreters used for LISP and similar languages．To clarify its operation，several exam－ ples will be preserted．In these examples we will trace the invocations of＇eval＇and＇apply＇ard occasionally other func－ tions．

```
EXAMPLE 1：reduction of \(\lambda x y\{\operatorname{cons}(y, x)\}(\langle 23\rangle, i)\).
```

In the list representation this is：
$\mathrm{E}=\langle$ call＇ F A \rangle
$E=\left\langle ' i a m b d a '\left\langle ' x^{\prime} \quad{ }^{\prime} y^{\prime}\right\rangle B\right\rangle$
$B=\langle ' p r i m ' ~ ' c o n s ' p\rangle$
$P=\langle\langle ' v a r ' ~ ' y '\rangle\langle ' v a r ' ~ ' x '\rangle\rangle$
$A=\langle\langle ' c o n s t '\langle 23\rangle\rangle\langle ' c o n s t ' ~ i\rangle\rangle$
Eval（E，＜＞）：

```
                closure = eval(F,<>) = <'closure' F <>>
```

 actuals \(=\) evlıs \((\mathrm{A},\langle \rangle)=\langle\langle 2\) 3> i>
 apply(closure, actuals):
 \(a b s=F\)
 env \(=\) pairlıs (\(\left\langle ' x^{\prime} \quad y^{\prime}\right\rangle\), actuais, 〈〉)
 \(=\left\langle\left\langle ' x^{\prime}\langle 2 \quad 3\rangle\right\rangle\left\langle ' y^{\prime} i\right\rangle\right\rangle\)
 evai(B,env):
 actuais \(=\) evils(<<'var' 'y'> <'var' 'x'>>, env)
 \(=\langle 1<23\rangle>\)
 apply-prım('cons', <i <2 3>>):
 cons(i, <2 3>) = 〈i 2 3>
 EXAMPLE 2：Reduce

$$
\begin{aligned}
& \text { let } i=3 \text { in } \\
& \text { let } \bar{E}=\lambda x\{\operatorname{prod}(x, i)\} \text { in } \\
& \text { Iet } i=2 \text { in } \\
& f(i)
\end{aligned}
$$

To translate this to list representation it is necessary to first eliminate syntactic sugar：

$$
\lambda i\{\lambda E\{\lambda i\{E(i)\}(2)\}(\lambda x\{\operatorname{prod}(x, i)\})\}(3) .
$$

Notice that by doing a hand reduction of this we can determine that the correct reduction is 5 ．For the sake of this example we will assume that＇eval＇can evaluate the primitive application ＇prod＇，which multiplies two numbers．

```
E = 'call' I <<'const' 3>> >
I = \langle'Iambda''\langle'I'\rangle\langle <'call' E <X\rangle\rangle \rangle
F = <'lambda' <'I'> <'call' J <<'const' 2>> >>
J = <'lambda' <'I'\rangle <'cail' <'var' 'I'\rangle\langle<<'var' 'I'\rangle\rangle}\rangle
X = \langle'Iambda'' \langle'X'\rangle}P
P = \langle'prım' 'prod' <<'var' 'x'\rangle\langle'var' '1'\rangle\rangle>
Eval( E,<>):
    closure = <'closure' I <>>
    actuais = <3>
    apply( closure, actuals ):
        abs=I
        env = <<'1' 3>>
        eval(\langle'cali' F <X\rangle>,\langle<'1' 3>> ):
            closure = <'closure' E <<'i' 3>> >
            actuals = evils( \langleX\rangle,\langle<'i' 3>\rangle)
                = <C\rangle where C = <'clusure' X <<'1' 3>>>
        apply( closure, actuals ):
        abs=x
        env = <<'I' C> <'1' 3>>
        eval(<'call' J <<'const' 2>>>, env ):
        ciosure = <'ciosure' J <<'I' C> <'I' 3>>>>
        actuals = <2\rangle
        apply( ciosure, actuals ):
        abs = J
        env = <<'1' 2\rangle\langle'I' C> <'1' 3>>
        eval(\langle'cali' <'var'' 'I'\rangle \langle<'var' 'I'\rangle>> >, env) :
        closure = evai( \langle'var' 'I'\rangle, env) = C
        actuals = <2>
        appiy( closure, actuals):
            abs=x
            env = palrlis( \langle'x'\rangle, \langle2\rangle, ep(closure) )
                = pairlis(\langle'x'\rangle, <2\rangle,\langle<'1' 3\rangle\rangle)
                =\langle<'x' 2> <'1' 3>>
            eval( P, env):
            actuais = evai(<<'var' 'x'\rangle \langle'var' 'I'\rangle>, env )
                    = <2 3>
            prim-apply( 'prod', <2 3> ):
                prod}(2,3)=
```

Do the reduction by hand to be sure you see that this is the right answer.
I.4.17 reolacement of variabies by iixed locations. Observe that our current interpreter spenत्रि a lot of its time searching association lists for the vaiues of variables. That is, the evaluation of $\left\langle ' v a r '\right.$ ' $\left.x^{\prime}\right\rangle$ in the ervironment 'a' requires searching 'a' for a pair whose Eirst elemert is ' I^{\prime}. Such searching is expensive on most computers, so we will develop a method of interpreting the lambda calcuius which does not require it. In particular, we will repiace searching by array subscripting,
which is much more efficiert．whe will develop the orocess for single variable abstractions initially and later extend it for multiple variables．Consider an abstraction＇$\lambda x\{E\}$＇in some environment＇＜．．．＞＇．The closure formed from evaluating this abstraction will be

$$
\langle ' c l o s u r e ' ~\langle ' l a m b d a ' ~\langle ' x '\rangle ~ E\rangle ~\langle\ldots . . .\rangle ~\rangle . ~
$$

Wher this closure is applied to an oderand value＇u＇its evalua－ tion will always take the form
eval (E, 〈<'x' u> ...〉).

Notice that the bound variable of the abstraction being evaiuated will always occupy the first pair of the environment．Therefore there is really ro reason to search for this variable since we know where it is．Since the abstraction we chose was arbitrary， this can be seen to be true for all abstractions．In fact，we find that it is true for all variables that we can determine the position of each variable in the environment by counting the number of＂scopirig lines＂that must be crossed in getting from a use of the variable to its definition．This number is called the static distance of a variable from its definition，and is for－ mally defiried to be the number of scopes containing the use of the variable that do not contain its defirition（bindirg occurence）．For instance，in

the static distances of the variabies from their definitions are indicated．For＇E＇it is 2，for＇x＇it is l，for the leftmost ＇i＇it is i and for the rightmost＇i＇it is 2 ．Since we know where each variable occurs in the associatior list，we carl replace expressions of the form＜＇var＇＇x＇〉 with expressions of the form＜＇var＇n＞where n is the position of variable＇x＇in the environment．This value n will be called the vp or variable position，as indicated in the new structure declaration for vari－ ables：

structure var：（vp）

Since we no longer use the variable rames to look them up in the environmerit，we can eliminate them and represent the environment as a list of values rather than an association list．For instance the association list
$\left\langle\left\langle ' x^{\prime} 2\right\rangle\left\langle ' y^{\prime}\right.\right.$＇Moriterey＇＞＜＇z＇＜0 i 2＞＞＞
will be simplified to

$$
\langle 2 \text { 'Monterey' <0 1 2\gg. }
$$

Then, looking up <'var' $\left.r_{1}\right\rangle$ in environment 'a' is simply accomplished by $a[n]$. Since variables are no longer needed, the bound variable list can also be eliminated from the representation of abstractions. For instance ' $\lambda x\{\operatorname{cons}(x,\langle \rangle)\}$ ' is represented by

$$
\langle ' l a m b d a '\langle ' p r i m ' ~ ' c o n s ' ~\langle ' v a r ' ~ l\rangle\langle ' c o r i s t ' ~\rangle ~>\rangle ~\rangle . ~
$$

The new structure definition for abstractions is:

structure lambda: (body)

This process of coriverting variables from names to numeric lacations is one that is usuaily Derformed by a translator or compiler. Since we are translating by hand from the lambda calculus to its list representation, we must do this counting ourselves. It is generally true of programming language implementations that, as we have done here, the run-time efficiency of a program can be increased by doing more work at combile time.

There are only a few simple changes necessary to convert 'eval' to use the new numeric variables \rightarrow all simplifications. The rule for 'var's is simply altered to subscrint the requred value out of the environment:
elsif is*var then a!vp(e)!

The only other change is to the 'apply' procedure: since environmerts are simple iists of values the environment of evaluation is constructed by apperding the operand to the front of the environment of definitior.

```
arid rec apply = proc( closure, actuals) begir
    let abs = ip(closure) ir
            let env = append( actuals, ep(closure) ) in
                        eval( body(abs), env) end
```

To clarify these ideas we will trace the evaluation of the lambda expression:

$$
\lambda i\{\lambda E\{\lambda i\{E(i)\}(2)\}(\lambda x\{\operatorname{prod}(i, x)\})\}(3)
$$

This is represented by the list:

```
E = \langle'cail' I <<'const' 3>> >
I = \langle'lambda' <'caII' F <X\rangle\rangle \rangle
F = \langle'lambda' <'cali' J <<'const' 2>> >>
J = <'lambda' <'cail' <'var' 2> <<'var' i>> >>
X = <'lambda' P>
P = <'prım' 'prod' <<'var' 2\rangle <'var' i>> >
```

```
Eval( E, <>) :
apply( 〈'closute' I 〈>>, 〈3> ):
        env \(=\) append ( 〈3>, <> ) = 〈3>
        eval( 〈'call' \(\mathrm{F}\langle\mathrm{X}\rangle\rangle,\langle 3\rangle\) ):
```

Evaluation proceeds much as betore，until the stage when the application $I(i)$ must be evaluated：

```
eval( <'call' <'var' 2> <<'var' 1>> >, <2 C 3> ):
    closure = eval( <'var' 2\rangle, <2 C 3> ) = C
    actuals = evlıs( <<'var' i>>, <2 C 3> ) = <2>
    apply( C, <2> ):
        env = append( <2\rangle, <3\rangle ) = <2 3>
        eval( P,<2 3> ):
            actuals = evlis( <<'var' 2\rangle \langle'var' i>>, <2 3> )
                        = <3 2>
    pr1m-appiy( 'prod',<3 2>) = 6
```

I．4．18 static nestirig level．The approach used above is based on the replacement by the translator of variable names by numbers indicating the static distance of the use of the variable from its definition．This number will vary from one use of a variable to another．For instance，in

```
\lambdax{\operatorname{cons( x, \lambday{ cons( x, append(y,y) ) }(<A B>) ) } (C)}
```

the first use of＇x＇will be translated by＜＇var＇I＞while the second use of＇x＇will be translated by＜＇var＇ 2\rangle ．The transla－ tion process would be a little simpler if a single number was always associated with all uses of a given variable．We carı do this by using the static nesting level of the definition of the variable as this number．The static nesting level of the
definition of a variable is one more than the number of scopes in which that definition of the variable is rested. In the diagram below, the static nesting levels of the variables are indicated:

The above diagram also indicates the static nesting levei of the uses of variables. Notice that the static nesting level of the Use of a variable is the sum of the static nesting level of its definition and the static distance to that use. Therefore we can calculate the static distance from the static nesting level or vice versa. This mearis that one way to alter 'eval' to use static nesting levels is to alter it to compute the static distance and then to extract the value from the environment in the previous way. There is a simpler way, however, since we can so construct the environment that the static nesting level can be used to directly access the environment. To understand the way this is done notice that with our present 'eval' the "innermost" variabie is first in the environment and the "outermost" variable is last in the environment. To make most convenient use of static nesting levels we want to construct the environment so that the "outermost" variable (i.e. that at static nesting level I) is the first (i.e. a[l]) and the "innermost" is last. This is accomplished by simply concatenating the latest variable values to the right of the environment rather than the left. The only required alteration to the interpreter is to switch 'actuais', and 'ep(closure)' in apply:

$$
\begin{aligned}
& \text { let rec apply = proc(closure, actuals) begin } \\
& \text { Iet abs = ip(closure) in } \\
& \text { iet env = append (ep(closure), actuals) in } \\
& \text { eval(body(abs), env) end }
\end{aligned}
$$

The translation of lambda expressions into the list representation is simplified since a variable is always translated in the same way. The translation of our previous example is:

$$
\left.\left.\left.\left.\left.\begin{array}{rl}
J= & \langle ' I a m b d a '\langle ' c a l i '\langle ' v a r ' ~ \\
p & \langle ' p r ı m ' ~
\end{array} \text { prod'var' } 3\right\rangle\right\rangle\right\rangle\right\rangle\right\rangle
$$

EXERCISE: Trace the evaluation oI this Ilst.
I.4.19 multiple parameters. To keep the discussiar simple, we have only been discussing the implementation of abstractions and applicatiors with a single parameter. we will now extend our implementation to haride more char ore parameter.

In our current implementation (using static resting levels) the environmert is represented by a list of the form

$$
\left\langle v_{1} \quad v_{2} \cdots v_{n}\right\rangle
$$

where v_{i} is the value of the variable bound at static riestirig level \ddagger. To handie multiole parameters we will simply replace each of these values with a list of the values bound at each static nesting level. That is, an environmerit has the form

$$
\left\langle a r_{1} \operatorname{ar}_{2} \cdots a r_{n}\right\rangle
$$

where each ari is called the activatior record (or call Erame) for static nesting level i. An activation record is defined to be all of the information relevent to a call of a function. Each activation record has the form

$$
\left\langle v_{1} v_{2} \cdots v_{m}\right\rangle
$$

where the $v_{i s}$ are the values of the variables declared at the static nesting level corresponcing to the activation record. To access a variable it is now necessary to use two coordinates, (ep,vp), where the environment part (ep) is the static riestirig level of the activation record coritaining the variable, ard the variable part (vp) is the position of the value of the variable within that activation record. For example, if we are in the envirormerıt

$$
\left\langle\langle 1 2 3 \rangle \langle A ^ { \prime } ' ^ { \prime } B ^ { \prime } C ^ { \prime } \rangle \left\langle 4 D^{\prime}\langle 5 \text { 6〉 'E'〉> }\right.\right.
$$

then the (ep,vp) pair (2,1) will refer to 'A', the pair (3,2) will refer to 'D' and the pair (3,3) will refer to <5 5>. In particular, if 'a' is the envirormert, ther 'a[epl[vp]' is the value of the variable corresponding to the pair (ep,vp). In order to make use of this new structure for the environment, it is necessary to translate variables into lists of the form
<'var' ep vp>
where (ep,vp) is the location of the variable. This corresporids to the structure:

```
structure var: (ep, vp)
```

Therefore, to handle multiple parameters, the rule for 'var's in
'eval' must be changed to:

$$
\begin{aligned}
& \text { elsif is-var(e) then ar[vo(e) } \\
& \text { where ar }=a[e p(e)]
\end{aligned}
$$

The next issue to be addressed is the coristruction of these environments by the 'apply' procedure. If the environment of definition from the closure is

$$
\left\langle a r_{1} \cdots a r_{n}\right\rangle
$$

and the actual parameters of the application are

$$
\left\langle v_{i} v_{2} \cdots v_{m}\right\rangle
$$

then the environment in which the body of the abstraction is evaluated should be

$$
\left\langle a r_{i} \cdots a_{n}\left\langle v_{i} v_{2} \cdots v_{m}\right\rangle\right\rangle
$$

That is, a new activation record, $a r_{n+1}=\left\langle v_{j} \ldots v_{m}\right\rangle$, is made the new iast element in the environment. If ${ }^{+}$ep' is the environment of definition and ' x ' is the actual parameter list, ther

```
consR(ep, x )
    where consR = proc(L,x){ append( L, cons(x,\langle>) ) }
```

will construct the environment of evaluation. The appropriately modified 'apply' is:

```
let rec apoly = proc( closure, actuals) begin
    let abs = ip(closure) irl
            let env = consR( ep(closure), actuals) in
            eval(body(abs), env) end
```

and consR $=\operatorname{proc}(\tau, x)\{\operatorname{append}(\longleftarrow, \operatorname{cons}(x,\langle \rangle))\}$

The complete 'eval' is shown in the next figure. To demoristrate the operation of the new 'eval', we will trace the reduction of

$$
\lambda x y\left\{\lambda z\left\{z^{*} z+x\right\}(x+y)\right\}(2,3)
$$

First we translate the lambda expression into our isist represen tation, numbering the lambdas as before:

```
<call <lambda(1)
        <calI <lambda(2) <prim sum <prim prod <var 2 l> <var 2
                                    <var l l>> >
                        <prim sum <var l l> <var l 2>> >>
        <const 2> <const 3>>
```

```
let rec Eval = proc(e,a) begin
    if is-const(e) then const-val(e)
    elsif is-var(e) theri ar[vp(e)] where ar = a[ep(e)]
    elsif is-lambda(e) then closure( e, a)
    elsif is-prim(e) then apoly-mrim( rator(e), actuals)
        where actuals = eviis( rands(e), a)
    elsif is-call(e) then apply( closure, actuals)
        where closure = eval( rator(e), a)
        and actuals = eviis( rands(e), a)
    elsif is-if(e) ther,
        if eval( corid(e), a) therı eval( t-branch(e), a)
        else eval( f-branch(e), a) endif
    erıdif end
and rec evlis = proc(t,a) begin
    if null(L) then <>
    else cors( eval(L[l},a), evlis(rest(L),a) ) endif end
and rec apply = proc( closure, actuals) begin
    let abs = ip(closure) in
        let env = corısR( ep(ciosure), actuals) irr
                eval(body(abs), env) enld
and apply-prim = proc(f,x) begin
    if E='first' then Eirst(x[l])
    elsif f='cons' then cons( x[1], x[2] )
    elsif ...
    endif end
in ...
and consR = proc(L,x){ append (L, cons(x,<>) ) }
Figure 5. Eval for Fixed-location Variables
```

Here we see chat ' x ', ' y^{\prime} and ' z ' have been translated as '<var 1 i>', '<var I 2>' and '<var 2 i>', respectively, on the basis of their static nesting levels and their positions at that level, ie. their (ep ,vp) coordinates. The trace follows:

```
E = <'call' X <<'const' 2> <'const' 3>> >
X = <'lambda' <'call' 2 <S>> >
2 = \langle'lambda' <'prım' 'sum' <P <'var' i i>> >>
S = \langle'prım' 'sum' <<'var' i i> \langle'var' i 2\rangle> >
p = <'prım' 'prod' <<'var' 2 i> \langle'var' 2 i>>>>
Eval( E, <> ):
appiy(<'closure' X <> >, <2 3> ):
        env = consR(<>, <2 3> ) = <<2 3>>
        eval( <'call' 2 <S>>, <<2 3>> ):
        actuals = evils(<<'prım' 'sum'
                                <<'var' i i> <'var' i 2>> >>, <<2 3>> )
                        =\langle\operatorname{sum}(2,3) > = \langle5\rangle
        appiy(<'closure' Z <<2 3>> >, <5> ):
        env = consR( <<2 3>>, <5> ) = <<2 3> <5>>
        eval(\langle'pr\perpm' 'sum' <p<'var' i i>> >, <<2 3>< <5>>) :
        actuals = evils( <P <'var' i i>>, <<2 3\rangle\langle5>> )
                        = < eval(P,<<2 3><5>>) 2 >
```

It $1 s$ now necessary to compute the subexpression, eval(p,<<2 $3\rangle\langle 5\rangle>$).

```
eval( D, <<2 3> <5>> ):
    actuals = evlis( <<'var' 2 i\rangle \langle'var' 2 i>>,
                                    <<2 3><<5>> )
    = <5 5>
    pr1m-appiy( 'prod', <5 5> ) = 25, hence,
pı ım-appiy( 'sum',<25 2> ) = 27
```

actuals $=\langle 25$ 2 $>$

You will recall that there were two possible versions of the single-parameter 'eval': one which used static nesting levels and one which used static distances. There are also two possible versions of the multiple-parameter version of 'eval': we can use either static nesting levels or static distances. When we investigate implementations of the lambda calculus further, later, we will find that there are circumstances when it is betcer to use the static distance and other circumstances when it is better to use the static riesting level. These are similar to implementation techniques called "static chains" and "disolays". which are discussed later.

EXERCISE: Trarislate the Iambda expression

$$
\lambda x y\left\{\lambda z\left\{z^{*} z+x\right\}(x+y)\right\}(2,3)
$$

into the iist representation using static distances instead of static nesting levels. Make the appropriate changes to 'eval' so
that it will work correctly with 'var's containing static distances and show that it works by tracing the evaluation of the above expression.

Chapter 5

I . 5
Runtime organization
I .5.l Goals Defined
In this chapter we will study the stack implementation of the extended lambda calcuius. That is, we will study how ELC can be translated into the instructions of conventionai computers by using the data structure known as a stack. Since all blockstructured lanquages, when stripped of their syntactic sugar, are essentially the lambda calculus, you will be learning how to implement these lanquages. (This important class of languages includes Algol, Pascal, PI/I and Ada.)

I .5.? Stacks

The data structure used on most computers for implementing block-structured languaqes is the stack. Stacks derive their name from the push-down stacks that are often used for dispensing plates in cafeterias (figure I).

Figure i. The Original Push-Down Stack
With these devices, each time a plate is removed from the top, the stack pops up to bring the next plate to the too. $\overline{\text { Corin }}$ versely, whenever a plate is placed on the top of the stack, it oushes down the plates already there. Thus, a particular plate can be pushed onto the stack, and have other plates pushed on top of it, thereby hiding it. But if these plates are later popped OEf, then the plate we started with will again be at the tod of the stack. This property, being able to save things lor information) by pushing them on a stack, makes the stack data structure particularly valuable in programming lariguaqe implementation. Stacks are also know as push-down stores, deques and LIFns (which means "last-in, first-out" and is pronounced "lie-foe"). To see the reievence of stacks to programming ianguage implementation, we must next investigate postfix instructions.

I .5.3 Postifx Instructions

We have seen how expressions can be written in functional form. For irstance,

$$
x+a b(y-z)
$$

can be written

$$
\operatorname{sum}(x, \operatorname{prod}(\operatorname{prod}(a, b), \operatorname{dif}(y, z)))
$$

When an expression such as this is written without parentheses it is call prefix notation or Polish notation (after Jarı f ukasiewicz, the Polish loqician who inverited it). The above expression writter in prefix notation is:

One of the important properties of Polish notation (arid the reason it was invented) is that it is never necessary to use narentheses with it; it is ofen called parentheses free notation.

The reason Polish notation is also called prefix rotation is that the operator is wricten before (pre-) its operands. E.g.

$$
+x y
$$

The usual mathematical convention is calied infix rotation because the operator is written between (in-) its operands:

$$
x+y
$$

It should he obvious that if we wrote the operator after its operands, then we would be writing in postfix or reverse polish notation. Reverse Polish notation is more important to computer scientists than Poiish notation because reverse Polish carı be evaluaced easily by using a stack.

You may be familiar with "RPN" (or Reverse Polish Notation) calculators, such as those manufactured by Hewlite-Packard and National Semiconductor. With these calculators expressions to be evaluated are entered in postfix notation and temporary results are held in a stack. For instance, to calculate

$$
2+5 * 10
$$

which is postix notation is

$$
2510 *+
$$

we would hit the keys:

The follwing diagram shows how the stack holds the intermediate results.

Notice how the stack holds the operands before the oneration (e.g. 5 and lo) and the results after the operation (e.g. 50).

I .5.4 The [-Machine Architecture
We will row investigate a computer with a stack architecture, i.e. a computer that uses a stack for the evaluation of postfix instructions. Although the L machine is not a real computer, it is essentiallv a simolification of several commercially available machines.

The L-Machirie has three registers (high speed memory locations), cailed SP, EP and IP, and a memory addressed by consecutive natural numbers that can hold both data and instructions. The register names are mnemoric:

```
SP - Stack Pointer
EP - Environment Pointer
IP - Instruction Pointer
```

The $S P$ register holds the address of the top of the stack, the EP register hoids the address of the current activation record (explained Eurther later) and the IP register holds the address of the next instruction to be executed. The L-Machine's storage architecture is summarized ir the following figure.

Figure 2. L-Machine Storage Architecture

The L-Machine has some 25 instructions that it is able to execute. We will discuss each of these ir the following paragraphs and indicate their operation with diagrams.

1 PIJSH. The 'PUSH' operatior pushes a constant value onto the stack. That is, if kis any constant (i.e., number, string, Boolearı or list), then 'PIJSH k ' will increment the $S P$ register and store k in the memory location addressed by $S P$. In diagramatic form:

Stack

PIJSH k

2 PUSHEP. The "PUSHEP" operation pushes the current cortents of the EP register onto the stack:

3 POP. The 'POP' iristruction discards elements from the top of the stack. That is, 'DOP k ' will pop the top k elements from the stack and discard them. E.g..

4 SETEP. The 'SETEP' operation Dops a vaiue from the stack and places it in the EP register.

SETEP
5 MARK. The 'MARK' operation moves the current contents of the s \bar{P} register into the EP register. The effect of this is to remember the location of the current top of the stack.

5 COPY. The 'COOY' operation copies a value from within a specified location of the stack, and places it on top of the stack. For instance, 'COPY 3' copies the value that is third from the top of the stack and pushes it:

COPY 3
7 SWAP. The 'SWAP' operation exchanges two elements of the stack. For instance, 'SWAP 2,5' swaps the second and fifth elements from the top of the stack:

SWAP 2,5

8 PAIR. The 'PAIR' operation combines the top two stack elements $\overline{i n t o}$ one; the two elements become the left and right halves of the resulting value. These two values can be extracted by 'LeFT' and 'RIGHT', described below.

PAIR

9 LEFT, RIGHT. The 'LEFT' operation extracts the left half of a value constructed by 'PAIR':

LEFT
The 'RIGHT' operation extracts the right half.

- 10 VAL. The 'VAL' operation access the current contents Of a location in memory. The 'VAL' operation takes an address from the top of the stack and replaces it with the contents of the memory location at that address.

VAL
Ii SPiT. The 'SET' operation changes the current contents of a memory location to a specified value. It takes a value and an address from the top of the stack and stores the value in the memory location with that address. The value is left on the top of the stack.

SET
i2 ADD, SUR, MUL, DIV. These oderations periorm addition, subtr $\overline{a c t i o n, ~ m u l t i p l i c a t i o n ~ a n d ~ d i v i s i o n . ~ T h e ~ o p e r a n d s ~ a r e ~}$ the two top elements of the stack, which are replaced by the results of the operation. This is essentially like an RPN calculator.

Any other primitive operations with which we wish to equip the L-Machine (such as the relationals, EQ, NE, GT, etc.) would operate analogously.

13 IE. The 'IF' operation performs a jump if the top of the stack is 'true'. In particular, the operation 'IF k ' pops the stack and, if this value is 'true', transfers to the instruction at location k (by placing k in the Ip register). If the too of the stack is false then execution continues at the instruction which follows the 'IF'.

IF K

14 GOTO. The 'GOTO' operation transfers coritrol to another location by placing its operand in the Ip register.

GOTの k
15 GOI. The 'SOI' operation is an "indirect goto". That is, the top of the stack is a value that is used as the address of the next iristruction to execute. This is accomplished by popping the stack into the IP register. $\mathcal{I O I}$ is used instead of GOTD when the destiration address must be computed while the program is rurning.

301
I .5.5 Activation Record Structure As we learned in Chapter I. A the activation recorत is the implementation mechanism that embodies the idea of the local erivironment of a computatior. Activation records will also be important to our compiled implemeritation of the lambda calculus. so in this section we will study their implementation on a stack. You wili remember that we defined an activation record to be all of the information relevent to a call of a procedure. In the Fval interoreter this was just the values of the bound variables of the function. We will see below that in the compiled implementation additional information must be included in the activation record.

Consider the following lambda expression, which we have already investigated several times:

```
let \(i=3 \mathrm{in}\)
    let \(E=\operatorname{proc}(x)\{x * i\} i n\)
    let \(i=2 \mathrm{in}\)
            E(i)
```

This can be represented by the contour diagram in figure 3. In this diagram we have drawr solid arrows from each contour to the statically enclosing contour. These arrows are called static links. A static chain is any contiquous sequerice of static Iinks, for instance from the $i=2$ contour to the $\bar{f}=\lambda\{x i\}$ contour to the $i=3$ contour. what the static chair provides is a search path for looking up variables. For instarice, if we are executing in the environment indicated by the π in the above diagram, and wish to evaluate 'i', then we proceed as follows. First look in
a

Figure 3. Coritours
the local environment: is it defined here? No, only ' x ' is defined here, so follow the static link to the enclosing environmet: is it defined here? Yes, the value of 'i' is 3. If it hadn't been defined here we would have followed the static link and continued searching in the statically enclosing environment.

In our compiled implementation of the lambda calculus, activation records will be stored in a stack. We will use static i inks to find our way from one activation record to the next. For instance, when we begin executing 'f(i)' in contour (c), the stack's structure will be:

C

Figure 4. Before call to f
The activation records correspond exactly to the contours ericouricered in following the static chain from 'ri)'. The ep register always points to the beginning of the static chain. Now. suppose we call the function bound to 'E'. This amounts to entering the contour (d) to execute 'x*i'. The activation record for 'f' will be pushed onto the top of the stack. Note, however that the static chain reflects the correct environment for 'xii':
d

c

b

a

Figure 5. Inside E
In particular, when we come to evaluate 'i', we will follow the static chain to activation record (a), which binds 'i' to 3. When the furiction 'f' is exited the activation record (d) must be deleted from the stack and the situation restored to that of if gure 4. To do this it is necessary to regain access to activation record (c), the activation record of the caller of 't'. Doing this requires another lira, the dynamic link, from each activetron record to its caller. The sequerice of dynamic links is called the dynamic chain. In $\begin{gathered}\text { figure }\end{gathered} 6$ we see the same situation as in figure 5 (ie. inside f) except that the dynamic chair is shown.

Figure 5. Inside \bar{E}, with dynamic chain

Notice that the dvriamic link always points to the next lower activation record in the stack.

So far we have seer that the activation record contains three oieces of information: the values of the bound variables, the static link and the dynamic link. There is one other type of information that is useful to include in the activation record: temporaries. when we discussed the stack evaluation of postix expressions we saw that the stack holds operands until it is time to onerate on them. We will use the stack for the same purpose here.

The actual format we will adopt for activation records is not the same as we have investiqated so far. The differences are not important, however; we have merely reorganized the fields of the activation record to make it more convenient to access them with the instructions of the L-Machirie. If we were compiling the lambda calculus for some other machine then some other arrangement might be better. The important thing is the information the activation record contains, irrespective of its arrangemerit:

* access to local environment (values of bindings)
* access to qlobal environment (static link)
* access to cailer (dynamic link)
* temporaries

This information must be irn any activation record. The format we will use for the L-Machire is shown in figure 7 .

Figure 7. Activation Record Format
I .5.5 Translation to L-Code

In this section we will discuss the L-Code (L-Machine instruction) translations for each coristruct in the exterded lambda calculus. To aid this discussion we will use the notation Alel to denote the L-Code cranslation of the lambda expression e. For instarice,

$$
\text { AP } 25)=\text { PISSH } 25
$$

The translations we will investigate in the rest of this section are not unique; different machiries would suggest different code sequences; there are even different ways of accomplishing the
 ticular irstructions presented here, but rather the iritormation flow required to execute the lambda calculus constructs. Sirice the lambda calculus forms a deep structure for most programming languages we are essentially studyirg the implemeritation methods for most programming languages.

1 Constants The translation of variables is the simpiest, sifice ali we have to do is to push the constarit on the stack. For instarice,

ヘ(25) $=$ PUSH 25
A(hat') $=$ PUSH 'hat'
Λ (<i <'hat' 2>>) = PUSH <1 <'hat' 2>>
or in gerierai, for any constant c.
$\Lambda(c)=P U S H C$
2 Variables In the discussion of the Eval interpreter we saw the use of (eo,vp) pairs to locate variables withir the environmerit. We will do the same with our compiled implemeritation: the ep will locate the activation record holding the varis able and the vp will locate the variable within that activation record. The static distance method of measuring the eo wili be used.

First, consider how we get to the activation record in which the variable resines: if ep=l then the variable resides in the current activation record, which is pointed to by the FP register. If ep=2 then the variable resides in the next most enclosing activation record, which we reach by followina one link of the static chain form the current activation record. If ep=3 then we must follow two links of the static chain. In qerieral, we must follow ep-l lirks to aet to the activation record containing variable (ep,vp).

Now let us consider the L-Code required to follow the static chair. Our goal will be to get the address of the activation
record ep onto the top of the stack. Consider the case ep=i. In this case the activation record is the current one, so

PUSHEP
will push its address onto the stack.
Now consider the case ep=2; here we must follow the static chain one link. Recall that both the EP register and the static links always point to the static link field of an activation record. See figure 8.

Fiqure 8. The Static Chain
Hence, after performing puSHEP the top of the stack is the address of the static link for the current activation record. We cari use VAL to load the contents of this location, i.e. to get the address of the next activation recorc in the static chain. Hence,

PIJHEP
VAL
will leave on the top of the stack the address of the ep=? activation record.

Following the same reasoning we can see that if eo=3 then the address of the activation record is computed by:

PISHEP
VAL
VAL
In generai, the code to access the activation record at static distance ep is PUSHEP followed by ep-l VALs. We will write this:

puSHED

$(e p-1)$ * \{ VAL
We have seen how to use the ep part of a variable's coordinates to get to the activation record in which it resides. We will now investigate the use of the vp part to locate the variable within that activation record. Figure 9 shows an activation record with several measurements indicated.

Figure 9. Activation Record Distances
If base is the base address of the activation record (i.e. the address of its static link) then

base-2-n-vp

is the address of the voth variable in that activation record. We car rewrite this as

$$
\text { base - }(2+n-v p)
$$

Notice that $(2+n-v p)$ is a constant that depends only on the $v p$ coordinate of the variable and the number of variables bound at lexical level ep. We will call this latter quantity nep and define

$$
\delta(e p, v p)=2+n_{e p}-v n
$$

Thus the address of the variable with coordinates (ep ,vp) is

$$
\text { base en }{ }^{-\delta}(e p, v p)
$$

It is very easy for a compiler to compute the quantity $\delta(e p, v p)$; it need only keep track of the number of variables declared at each lexical level.

Now we are ready to out together the two parts of the variable accessing mechanism. To get the address of variable (ep,vp) we need basep. the address of the activation record at static distance ep. This is exactly what is computed by:

$$
(e p-i) *\left\{\begin{array}{l}
\text { PUSHEP } \\
\text { VAL }
\end{array}\right.
$$

To get the address of the variable we must subtract $\delta(e p, v p):$

$$
\begin{aligned}
& \text { push } \delta(e v, v o) \\
& \text { SUB }
\end{aligned}
$$

Theretore the code for accessing the variable with coordinates (ep,vp) ard leaving its value on the stack is:

$$
\begin{aligned}
\text { Var ep,vp } & = \\
& \text { PUSHEP } \\
(e p-1) *\{ & \text { VAL } \\
& \text { PIJSH } \delta(e p, v p) \\
& \text { SUB } \\
& \text { VAL }
\end{aligned}
$$

We have given this sequence of instructions the "macro" name Var because it occurs so frequently. Macros like this are sometimes called code skeletons. For example, if the coordinates for ' x ' are $(3,2)$ ard $n_{3}=3$ then the code for accessing ' x ' is:

$$
\begin{aligned}
& \text { } \begin{array}{l}
\text { Mx) } \\
\text { PUSHEP } \\
\text { VAL } \\
\text { VAL } \\
\text { PUSH } \\
\text { SUB } \\
\text { VAL }
\end{array}
\end{aligned}
$$

since $\delta(3,2)=2+r_{1}-2=2+3-2=3$.
It must be emphasized again that the L-Code shown here is appropriate to the activation record format we have choser. If the activation record format were different, then different instructions would be required. The important ideas to remember in accessing a variable with coordinates (ep,vp) are:
i) Find the activation record holding the variable by following the static chain for a static distance of ep.
2) Use the vp coordinate to access the variable within the activation record found in step (l).

We can now state the translation rule for a variable 'v' with coordinates (ep ,vp):

$$
\Lambda(v)=\underline{V a r} @ n, v o
$$

3 Applications

Recall that the steps involved in evaluating a application are:

1) Evaluate the operator.
2) Evaluate the operands.
3) Construct the environmerit of evaluation.
4) Evaluate the body of the function in this environment.

The code that we produce for a application will have to perform these same steps. It is:

$$
\begin{aligned}
& \wedge\left(f\left(e_{1}, \ldots, e_{n}\right)\right)= \\
& \text { NE] } \\
& \Delta\left(e_{1}\right) \\
& \widehat{\wedge}\left(e_{n}\right) \\
& \text { aI }
\end{aligned}
$$

The call macro instruction will do the work of constructing ar ı activation record for the new environment and executing the fundtion in that environment (steps (3) and (4)).
$\cdot \bmod \cdot \frac{\text { EXAMPLE: Compile }}{\operatorname{are}(3, i)}$. $\bmod (7,2)$ '. Assume the coordinates of $\wedge(\bmod (7,2))=$
$\Lambda(\bmod)$
ヘ(7)
(2)

Call $2=$
$\frac{\operatorname{Var}_{\text {PUSH }}}{}{ }^{7}$
PISH 2
Call 2
As rioted above, the Call macro instruction is responsible for building the new activation record and for entering the procedure. Since the parameter values are already stacked, orly the dynamic and static link parts of the new activation record remain
to be constructed. The steps are:

1) Construct dynamic lirk.
2) Coristruct static link.
3) Install the new current activation record.
4) Enter the function.

Since the dynamic link must preserve the state of the caller it has two parts: an eo to preserve the caller's environment and an io to preserve the next instruction to execute. These can be saved by constructing a closure:

PUSHEP
PISH r
PAIR
where r is the address of the next instruction following call; this is where execution of the caller will resume when the called procedure returns. This leaves the stack in the state:

$D L$
$P n$
\vdots
$\frac{P 1}{}$
:---
2

The static lirik must point to the environmert of definition of the procedure. As the above diagram indicates, the ($r_{1}+2$) position from the too of the stack contains a closure for the procedure to be called (this resulted from evaluatinq the operator in sted (i)). The static link is coristructed by extracting the left half (ep) of this closure:
copy $n+2$
LEFT
The third step, instaling the new current activation record, is accomplished by placing the address of the new activation record into the $F P$ register. Since the static link is currently at the top of the stack, this is accomplished by:

MARK
This leaves the stack in the state:

$S L$	1
$D L$	2
$P n$	3
$:$	
Pl	
$\mathrm{E}-\mathrm{closure}$	$\mathrm{n}+2$

and completes construction of the activation record.
The fourth step is to enter the function. The address of the first instruction in the function is contained in the closure at position $(n+3)$ in the stack. Thus transfer into the function is accomplished by:

```
COPY 3+n
RIGHT
GOI
```

Putting together the entire instruction sequence for Call yields:

It is to be emphasized again that the specific code sequence shown above is not so important as the aeneral steps involved in a call:

1) Save the state of the call in the dynamic link.
2) Make the static link from the ep in the closure.
3) Enter the function at the location determined by the ip of the closure.

EXERCISE: Design the activation record format for a computer with which you are familiar. Write the sequence of instructions necessary to do a Call on this machine.

4 Abstractions
Recall that in the Eval interpreter the proper execution of an abstraction was ensured by packaging it together with its
environment into a ciosure. In the compiled case the ep part of a closure is a pointer to the activation record of definition and the ip part is the address of the first instruction of the code for the abstraction's body. This is constructed by:

> PUSHED
> PUSH
> PAIR
where ' k ' is the entry adतress of the function. The body of an abstraction ' $\lambda v_{1} \cdots v_{n}\{\varepsilon\}$ ' is translated to:
k :
A (E)
Return n
where Return is a "macro" instruction described below. Since we do not want the function body to be executed before it is called, we must jump over it. Therefore, the translation of an abstraction is:

$$
\begin{aligned}
& \wedge\left\langle\lambda v_{1} \cdots v_{n}\{E\}\right\rangle= \\
& \begin{array}{ll}
\text { DUSHEP } & \text { ep } \\
\text { PUSH } & \text { ip }
\end{array} \\
& \text { PAIR } \\
& \text { GOTO s \} skip body } \\
& k: \wedge(E) \\
& \text { Return } n \\
& \text { s: }
\end{aligned}
$$

The Return instruction must accomplish the following tasks:

1) Pass the returned-value from the callee to the caller.
2) Restore the state of the caller from the dyramic lirk.
3) Delete the callee's activation record.

The state of the stack before the Return is:

The returned-value ('answer' in the ahove diagram) can be placed above the caller's temporaries and two words of the activation
record deleted by:
SWAP 1,n+4
POP 2

The environment of the caller is restored by:
COPY 1
LEFT
SETUP
leaving the stack in the form:

$D L$
$P n$
\vdots
Pl
answer

```
1
2
n+1
n+2
```

The address to which to return to the caller is extracted from the dynamic link and saved above the answer in the stack by:

```
RIGHT
SWAP 1,n+1
POP n
```

The 'POP n ' instruction deletes the n parameter values, exposing the return-address for a GOI back to the caller. The resulting code is:
Return $n=$
SWAP $1, n+4$
POP 2
COPY 1
LEFT
SETEP
RIGHT
SWAP $i, n+1$
POP n
GOT

```
save answer
delete closure, SL
restore EP from DL
get return address from DL
save return address
delete parameters
reenter caller
```

5 Conditionals
The compiled $[-$ Code for handing conditionals will operate similarly to the Eval interpreter. That is, for

$$
[B \Rightarrow T \mid E]
$$

we must first evaluate B and if it is true evaluate T, otherwise
evaluate F. The translation to accomplish this is:

```
\& [ B A> T | F ] ) =
        \ (B)
        IF t
        \ (F)
        fOTO x
    t: ^(T)
    x:
```

5 Blocks
In section I.4.20 we saw that the efficiency of blocks (local declarations) could be improved by implementing them in Eval directly, rather than as procedure invocations. The same is true with respect to the L-Code implementation of blocks, since a simpler activation record structure will suffice and since it will not be necessary to construct or decompose closures. Indeed, since a block is always invoked in its environment of definition, its static and dynamic links are always the same. Further, since a block is always invoked from the same place, it is not necessary to save the IP of the caller. Although this means that these items could be omitted entirely from the activation record for blocks, we will include space for them so that the format will agree with that of a procedure's activation record. This will allow us to use the translation of variables already discussed regardless of whether the variable was bound by a procedure or a block. In an actual compiler we might choose to use two different formats at the expense of a more complicated translation process.

With this explanation done we can proceed with the translacion of blocks. This makes use of two "macro" instructions which create and delete the block's activation record:

Sleet $v_{1}=e_{1}$ and \cdots and $v_{n}=e_{n}$ in $B l=$
$\left.\wedge \mid e_{1}\right)$
-
.
$\wedge\left(e_{n}\right)$
$\frac{\text { Begin }}{N|B|}$
End n
The Begin and End instructions are simplifications of Call and Return:

Begin $=$

PUSHEP	\} ep	build DL
PUSHEP $\}$ MARK	$\}$ inStall new current AR	

End $n=$

```
SWAP 1,3+n } save answer
POP 2 } delete first local and SL
    restore EP
SETEP } Erom DL
POP n-1 } discard rest of locals
```


INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314
Dudley Knox Library 2Code 0142Naval Postgraduate SchoolMonterey, CA 93940
Office of Research Administration 1
Code 012ANaval Postgraduate SchoolMonterey, CA 93940
Chairman, Code 52Bz 40Department of Computer ScienceNaval Postgraduate SchoolMonterey, CA 93940
Professor Bruce J. MacLennan, Code 52M1 20Department of Computer ScienceNaval Postgraduate SchoolMonterey, CA 93940

U198650

DUDLEY I'NOX LIBRARY - RESEARCH REPORTS

56853010577372

U198656

